Return Catering Guidance

August 2021 | 1st Edition

No reader should act based on the information in this document without referring to applicable laws and/or directives and assessing application to its own operations, including consulting with regulatory experts. Although every effort has been made to ensure accuracy, ACA (Airline Catering Association) shall not be held responsible for any damage or loss caused by reliance on any information in this document.

Contents

1.0	Introduction and Background	3
2.0	Purpose	3
3.0	Risk Assessment	3
4.0	Scope	4
5.0	Guidance	5
Me	nu Selection & Product Groups	5
Foo	od Safety System	5
In-f	light Storage	5
Ove	ernight Storage	7
Sar	nitation Programme	7
Airo	craft without Refrigerators	7
6.0	References	8
7.0	Appendices	8
8.0	Glossary	8
9.0	Q&A's	10
10.0	ANNEX I – Scientific Dossier, "Critical Storage Conditions of Food Products Applicable	to

- *Return Catering*", a report commissioned by ACA and conducted by the Mérieux NutriSciences Food Science Center of Saint-Herblain, France
- 11.0 ANNEX II Time/Temperature Trial Form

1.0 Introduction & Background

ACA (Airline Catering Association) is a not-for-profit international association. Its aim is to provide a forum for the promotion of cooperation among airline caterers and other stakeholders in the industry and to support the activities of its members, the onboard caterers, in their contribution to human, economic and social development globally and regionally.

Return catering is a popular method of food catering in the airline industry. Its activity is explained in some internationally recognised guidance documents, e.g., the World Food Safety Guidelines (WFSG) for Airline Catering, with some generic guidance and cooperative approach proposal in the menu design phase.

In the past, the menu selection for return catering was performed by using more robust products in regards to water activity or pH level like hard cheeses or smoked ham. Today scientific tools like "predictive modelling" are available that can simulate actual growth rates of pathogenic bacteria along different time/temperature scenarios.

The document in annex is based on the latest scientific know-how and provides orientation in the menu selection considering a set of time/temperature scenarios, based on predictive modelling. ACA recognises that additional food safe processes and procedures are required throughout the food supply chain to support return catering process and ensure time/temperature controls throughout the food supply chain.

ACA hence decided to partner with Mérieux NutriSciences to conduct a detailed scientific study on simulated variable storage conditions of components and/or meals applicable to return catering. The study uses predictive microbiology models to evaluate various times and temperatures that lead to unacceptable pathogen proliferation.

You may find the scientific dossier as an appendix to this document.

2.0 Purpose

The purpose of this document is to provide broad guidance on food safe processes and procedures and to simplify interactions between airlines and other stakeholders. This guidance document and the scientific dossier in annex should be used together to support food safety risk decision making such as, for instance, the suitability of specific components and/or meals given critical times and temperatures based on storage, handling and transportation conditions.

All return catering activities should be carried out in accordance with relevant local regulatory requirements in the country of operation where applicable.

3.0 Risk Assessment

A thorough and detailed food safety risk assessment was completed. This assessment led to the identification of food safety risks and hazards associated with return catering.

For the purpose of this guidance report, it was considered that all other food safety hazards were controlled by organisational processes and procedures and/or other internationally recognised food safety standards.

The following key hazards and control measures were identified as part of the assessment process:

Hazards	Control Measures
Pathogenic growth and/or quality issues due to unsuitable components and/or meals	Processes and procedures should be put in place to review the suitability of all components and main dishes which are stored, refrigerated and heated onboard. Components and main dishes containing hazardous components should not be provided.
Pathogenic growth due to temperature abuse through outbound flight	Thermal insulated bags with ice blocks should be used for unrefrigerated cabin stowage. Refrigerated containers should be used for hold stowage. Refrigerated containers are likely to require batteries and/or dry ice to operate and maintain appropriate temperatures. Electronic temperature monitoring equipment should be used for verification and validation. Time and temperature trials should be completed to validate controls. Contingency processes and procedures should be put in place for delayed flights.
Pathogenic growth due to temperature abuse through transportation	Refrigerated catering and/or support vehicles should be used to transport catering from the aircraft to overnight storage. Temperature readings from electronic monitoring equipment should be verified before catering is provided to the return flight. Contingency processes and procedures should be put in place for interrupted transportation activities.

4.0 Scope

This guidance document applies to all processes associated with:

- 1. Return catering,
- 2. Multiple sector (multi-hop) catering, and
- 3. Circumstances where overnight storage of food is required using methods to mitigate and minimise food safety risks and hazards, with specific emphasis on prevention of potential pathogenic microorganisms.

The scientific dossier can also be used as guidance for decision-making in any food processes in a food establishment that involves critical storage conditions of food products that are influenced by various intrinsic and extrinsic factors as detailed in the dossier.

4/11

5.0 Guidance

Menu Selection & Product Groups

Processes and procedures should be put in place to review and agree on the suitability of components and/or meals. It is recommended that the processes and procedures include a risk assessment, quality evaluation and microbiological analysis. The scientific dossier can be used to support the decision-making process on suitability of components and/or meals based on the known storage conditions.

The manufacturer's guidelines should always be followed for ready-to-eat (RTE) components and meals. These can include specification details, ingredients and components, microbiological criteria, chemical limits and tolerance, storage, and handling conditions, etc.

The suitability of components and/or meals should be confirmed before menu selection (including prohibited foods, restricted foods, susceptible foods, hazardous meal ingredients, and high-risk food items). The process should also consider local regulatory requirements that must be followed.

The components and/or meals should be consumed by the given date code. Time until consumption and duration of flight should be considered as part of the process.

The scientific dossier includes guidance on product grouping and can be used to support the menu selection process.

Food Safety System

A safe food management system should inevitably include return catering in its scope. Some of the key factors for consideration are:

- document control
- training and development
- infrastructure
- storage/transportation practises
- pre-requisite programmes
- inventory management
- internal/external audit management
- corrective/preventive actions, and
- continual improvement

In-flight Storage

Galley Loading:

Galley storage (or stowage) locations within an aircraft are a place where food is stored and distributed to consumers onboard. Galley locations can be both refrigerated and non-refrigerated. This depends on the airline and the aircraft type used in service.

Meals are generally stowed in refrigerated compartments in the galley of the aircraft, with all cooling systems switched on.

Loading examples include:

- Standard units (trolleys/carts) placed directly in refrigerated stowage positions;
- Catering packed in insulated carton boxes (cartons lined with expanded polystyrene) or other types of equipment such as coolers (non-refrigerated storage galleys).

Belly Loading:

Belly loading is a practice in the airline industry where items are stored in the lower deck (belly) of a passenger aircraft. This is also termed as cargo-hold area.

Meals are stowed in the lower deck (belly) of a passenger aircraft for return catering. Such loading examples are:

- Standard units placed in ULD's (Unit Load Devices);
- Catering packed in insulated carton boxes (cartons lined with expanded polystyrene) or other types of equipment such as coolers.

Airlines may decide to belly load food items for a return sector depending on space availability within an aircraft galley. If a decision is made to load the food items and containers in the belly, airlines should evaluate the risks (including product categories used for return catering).

Based on an airline's trials using data loggers, if time and temperature trials have been effective with re-producible data, trials should be carried out periodically to validate that the process can achieve the intended food safety controls.

If time and temperature trials have not been completed before the commencement of services, it is recommended to monitor time and temperatures of products by utilising data loggers for both galley and belly loading.

The food establishments should highlight the risks to the airline if a decision has been made to return cater food items in uncontrolled temperature storage.

Food establishments and airline stakeholders should work together and highlight food safety risks if any and agree upfront before commencement of service.

Airlines can use a data logger for evaluation purpose and risk assessment for return catering, which can be lag indicators to control and prevent hazards. Airlines should have a documented process to this effect.

Contingency processes and procedures should be put in place for creeping and delayed flights.

Double Catering Multiple Sectors:

Meals are generally stowed in refrigerated compartments in the galley of the aircraft, with all cooling systems switched on. It is essential for food establishments in association with the airline stakeholders to ensure that the cooling refrigeration systems are in good working condition and switched on and working at the correct temperature before loading of food and during the flight (no switching off of the cooling system).

Although the scientific dossier in annex does not cover frozen food products and their storage conditions, food establishments and airlines may require additional food safety plans to determine potential hazards, monitor and validate processes to have an effective plan established before commencement of operations.

Overnight Storage

Overnight storage is when the catering is removed from the aircraft and transported to a facility for storage on ground in a refrigerator or when the catering remains on the aircraft overnight and until the next flight departs.

In case there is a need to offload and store overnight, the airline acts as a supplier in the logistic chain. Adherence to the caterer's food safety program, local legislation and liability risks should be clarified upfront with the food establishment or caterer. As a minimum (but it should not be limited to this), the temperature of the goods should be checked prior to their offloading, monitored in between, and checked again when loaded back onto the aircraft.

Refrigerated vehicles should be used to offload and transport catering from the aircraft to the catering facility for overnight storage. Standard documented practices should be maintained and followed as per each food establishment's HACCP Plan.

N.B.: The Airline and/or the food establishment may require additional authorisation by the local food safety authority as the temporary food storage on ground may be treated as transit cargo, depending on local regulations in the country of operation.

Contingency processes and procedures should be put in place for creeping and delayed flights and such processes must be documented in order to mitigate risks.

Sanitation Programme

In-flight storage equipment should be clean, free from damage and kept in accordance with the manufacturer's instructions.

Sanitation Controls:

Sanitation Controls include procedures, practices and processes to ensure that the food establishment or caterer is maintained in a sanitary manner allowing it to control hazards such as environmental pathogens.

Associated guidance for sanitation controls includes, as appropriate:

- monitoring
- corrective actions
- verification (incl. environmental monitoring for an environmental pathogen or appropriate indicator organism as necessary), and
- records

Aircraft Without Refrigerators

Thermal insulated bags with ice blocks or dry ice should be used for unrefrigerated cabin stowage. Refrigerated containers should be used for hold stowage. Refrigerated containers are likely to require batteries and/or dry ice to operate and maintain appropriate temperatures. Electronic temperature monitoring equipment should be used for verification. Other methods can be used to maintain storage temperatures like, for example, insulated canisters or carts and/or dry ice.

AIRLINE CATERING ASSOCIATION

Time and temperature trials should be completed to validate controls before commencement of the activity. It is recommended that at least three trials are completed. The frequency of verification and validation should be established after studying all parameters associated with the activity (including post-trial validation example, microbiological analysis, etc).

The time and temperature trial form can be used to record time and temperature trials. The results can be referred to the storage time and temperature growth simulations of the scientific study. The time and temperature trial form is an appendix to this document.

6.0 References

Title	Ву
Food Processing Quality (FPQ) Standards and Interpretation Guidelines	Quality & Safety Alliance In-flight Services (QSAI)
US FDA Preventive Controls	United States Food and Drug Administration Preventive Controls
US FDA Sanitary Transportation of	United States Food and Drug Administration –
Food	Guidance for Industry: Sanitary Transportation of Food
WFSG	World Food Safety Guidelines

7.0 Appendices

Title	Ву
Scientific Dossier on Critical Storage Conditions of Food Products Applicable to Return Catering	Mérieux NutriSciences – June 2021
Time and Temperature Trial Form	ACA – July 2021

8.0 Glossary

Term	Details	
Audit	A systematic, independent, and documented process for obtaining evidence and evaluating it objectively to determine the extent to which the audit criteria are fulfilled.	
Calibration	A procedure for ensuring that a known measured output of an instrument such as temperature or weight corresponds to a known national standard value for that property.	

AIRLINE CATERING ASSOCIATION

Certification	A procedure by which a certification body, following its own independent assessment determines whether a business complies with the requirements of a recognized standard.		
Cleaning	The process of removing soil, food residues, dirt, grease, and other objectionable matter.		
Creeping Delay	It is sometimes difficult for an airline to estimate how long a delay will be during its early stages. When a flight delay unexpectedly becomes longer and longer, this is called a "creeping delay."		
Contamination	The introduction or occurrence of a contaminant in food or the food environment.		
Control measure	Any action at a control point which can be taken or used to prevent a hazard or reduce it to an acceptable safe level.		
Corrective Action	The action taken when the monitoring of a critical control point indicates a potential loss of control, or when a critical limit is not met.		
Data Loggers	Data loggers are calibrated electronic temperature monitoring equipment		
Food Establishment / Food Business Operators (FBO) / Caterers / Catering facility / Suppliers	Any place where food is manufactured, prepared, processed, traded or sold directly or indirectly to the consumer. The term includes any such place regardless of whether consumption is on or off the establishment. Other common terms used are food business operator (FBO), Caterer, Catering facility and Suppliers, which also means the same.		
Food Transportation Vehicle	Any mode of transport, designated for food, whether self-propelled or not and whether used on land, sea or in the air.		
Good Hygiene Practices (GHP)	All practices regarding the conditions and measures necessary to ensure the safety and suitability of food at all stages of the food chain.		
Good Manufacturing Practices (GMP)	The minimum quality & safety requirements aimed at ensuring that foods are prepared in a consistent manner according to agreed specifications e.g., raw & cooked food products are stored in separate refrigerators.		
Ready to Eat Foods	Any food for consumption without further treatment or processing. Examples of ready-to-eat food items may include sliced cooked meats, cooked meat products and preparations, cooked/roast chickens, sandwiches and filled rolls, dairy products such as milk and cheese, fruits, prewashed/topped and tailed vegetables, prepared vegetable salads, whole salad items such as tomatoes or cucumbers, open and canned ready-to-eat fish, and fish products such as salmon,		

	tuna or sardines, shellfish, preserves and jams, condiments, bread, confectionery, and biscuits
TCS Foods	Time/temperature control for safety (TCS) foods are foods that require time or temperature control to limit pathogenic microorganism growth or toxin formation.

9.0**Q&A**'s

1. <u>Why is it important to consider time and temperature during storage and handling of food products?</u>

A leading cause of foodborne illness is time and/or temperature abuse of TCS (food requiring time and temperature control for safety) foods. Food establishments should have a time/temperature control system for safe handling and to prevent growth of pathogenic microorganisms to harmful levels during storage and handling of food.

2. How do I know which product group I should use during menu selection?

It is essential to know the food components and the ingredients used in a meal. The scientific dossier in annex gathers pH and Aw values for more than 250 products from various sources. The products are combined into 46 main product families with one product considered as the most sensitive product of the family. The sensitive product characteristics (pH, Aw) are used for growth evaluation for the relevant time/temperature scenarios (4h to 24h, 5°C to 25°C) using predictive microbiology. Specific risk assessments for high-risk products due to higher probability of pathogen contamination should be applied before selecting any product or ingredient.

3. <u>What are the most critical factors that I should consider in order to minimise</u> <u>pathogen risk during storage?</u>

Among multiple intrinsic and extrinsic factors, pH, Aw, temperature and time are the most critical factors to determine unacceptable pathogens proliferation during storage at a specific temperature.

4. <u>Why should a risk assessment and hazard analysis be carried out when we already</u> <u>have temperature-controlled storage?</u>

Risk assessment is an essential part of a food safety plan or a management system. It is used to ensure that food safety controls are effective, relevant, timely and responsive to any threat irrespective of the existing methodology used to control hazards (i.e. storage in refrigerators). Food safety risk assessments can be quite complex even for well-established food establishments or caterers. A risk assessment helps prioritising risks and identifying with the management the necessary control measures in order to protect consumers.

5. <u>Who is responsible for time-temperature monitoring onboard an aircraft for return</u> <u>catering or during storage, handling, and transportation on ground for overnight</u> <u>storage?</u>

This depends on the food establishment and the operating airline. However, the two should always agree on, and document upfront, a process in order to establish monitoring activities

for time/temperature irrespective of where the monitoring takes place (whether on the ground or onboard).

In cases where aircraft aren't equipped with time/temperature monitoring devices, a thorough process should be agreed amongst the stakeholders involved. If the cold chain cannot be guaranteed or maintained throughout the operation, then an alternative to return catering should be considered.

6. <u>What should I do if I cannot control the time/temperature of foods after food products</u> <u>has left the facility?</u>

(Cf. Q&A 5) Food safety is everyone's responsibility. All stakeholders involved at various stages in the food supply chain should be consulted and should agree on putting in place a good and thorough management system to prevent foodborne illnesses.

A posteriori, in the case where food is subject to time/temperature variations, it should be considered as unsuitable and unsafe for consumption and should be discarded.

AIRLINE CATERING ASSOCIATION

ACA PROJECT

SCIENTIFIC DOSSIER CRITICAL STORAGE CONDITIONS OF FOOD PRODUCTS APPLICABLE TO RETURN CATERING

ACA - EXPERTISE SERVICES_02_2021_V3 CC

Study conducted in	2021 April-June
Ву	MERIEUX NUTRISCIENCES Food Science Center 3 Route de la Chatterie 44800 SAINT-HERBLAIN, FRANCE
Technical experts	Anne BRILLET (France Engineer Food Science Center) Joël CROCIANI (France Expert Microbiology) Christophe DUFOUR (European Scientific Director Microbiology) Steve OSWALD (US Consulting Director)

Client	
AIRLINE CATERING	Mr Fabio GAMBA
ASSOCIATION (ACA)	Director general
3 Rue du Luxembourg,	+32 473 901 707
1000 BRUXELLES, Belgium	E-mail: <u>fabio.gamba@asaworld.aero</u>

Version N°	Date	Nature of modifications
1	2021-06-05	Creation
2	2021-06-18	Modification 1
3	2021-06-24	Modification 2
4	2021-07-08	Modification 3

CONTENTS

EXEC	UTIVE	SUMMARY	3
DOCU	MENT	AIM	4
I.	CON	rext	4
II.	METH	IODOLOGY	
III.	FACT	ORS INFLUENCING THE MICROORGANISMS DURING THE STORAGE	7
IV.	RELE	VANT MICROORGANISMS	9
IV.1	. LIS	TERIA MONOCYTOGENES	9
IV.2	. ST	APHYLOCOCCUS AUREUS	
IV.3	. CL	OSTRIDIUM PERFRINGENS	
IV.4	. BA	CILLUS CEREUS	15
IV.5	. SA	LMONELLA SPP	17
IV.6	. ES	CHERICHIA COLI STEC	19
V.	-	DUCT CATEGORIES	
VI.	STOF	RAGE RISK EVALUATION	
VI.1	. GR	OWTH SIMULATION ACCORDING TO THE STORAGE TIME	
VI	.1.1.	LISTERIA MONOCYTOGENES	
VI	.1.2.	STAPHYLOCOCCUS AUREUS	
VI	.1.3.	CLOSTRIDIUM PERFRINGENS	
VI	.1.4.	BACILLUS CEREUS	
VI.2	. GR	OWTH SIMULATION ACCORDING TO THE STORAGE TEMPERATURE	
VI	.2.1.	LISTERIA MONOCYTOGENES	
VI	.2.2.	STAPHYLOCOCCUS AUREUS	
VI	.2.3.	CLOSTRIDIUM PERFRINGENS	
VI	.2.4.	BACILLUS CEREUS	
VII.	RESU	JLTS PER PRODUCTS FAMILY	
VIII.	APPE	NDIX	51
VIII.	1. DE	TAILLED PRODUCT CATEGORIES	51
VIII.	2. CC	NVERSION FROM CELSIUS DEGREE TO FAHRENHEIT DEGREE	
IX.	BIBLI	OGRAPHIC REFERENCES	

EXECUTIVE SUMMARY

In order to evaluate the critical limits of time/temperature of storage during specific catering situations such as return catering, the study evaluates the key factors influencing pathogens growth risk in food products. Based on the selection of critical pathogenic microorganisms, product families, and storage conditions, the study uses predictive microbiology to evaluate the time/temperature that lead to unacceptable pathogen proliferation. The study is based on bibliographical and simulation data's, not on field experiments or testing.

The microorganisms covered in this study are microorganisms with a target limit of absence in 25g with a maximum of 100 CFU/g (*Listeria monocytogenes*) for which an increase of 1 log is considered as the maximum tolerable growth. The study also considers microorganisms with maximum safety limits of 100 000 CFU/g (*Staphylococcus aureus, Clostridium perfringens* and *Bacillus cereus*) for which an increase of 2 logs is considered as a maximum tolerable growth. For microorganisms with a target limit of absence in 25g (*Salmonella* spp. and *E. coli* STEC), we consider exclusion of risk ingredients or food practice is the effective risk management measure and no acceptable growth has been considered.

Among multiple intrinsic and extrinsic factors, pH, Aw (water activity) and temperature are the most critical factors to determine unacceptable pathogens proliferation during storage at a specific temperature. It is widely accepted that products with pH < 3.9 or Aw < 0.88 will not lead to unacceptable growth in case of cold chain abuse, when food products with pH >5.4 and Aw > 0.96 are susceptible to all pathogen growth.

The study gathers pH and Aw values from more than 250 products from various sources (Combase, CRFSFS, ACA, Mérieux NutriSciences...). The products are combined in 46 main product families with one product considered as the most sensitive product of the family. The sensitive product characteristics (pH, Aw) are used for growth evaluation for the relevant time / temperature scenarios (4h00 to 24h00, and 5°C to 25°C / 41°F to 77°F) using predictive microbiology Sym'Previus software. Specific risk assessment for high risk products due to higher probability of pathogen contamination should be applied before selecting any product or ingredient.

The results of the study are presented in a graphical mode to evaluate the sensitivity to products leading to potential growth of the pathogens. Product families are located on the pH/Aw of the matrix, and specific growth and target microorganisms are specified with colour codes for 4 time/temperature scenarios: 22h00 at 5°C (41°F), 18h00 at 10°C (50°F), 10h00 at 15°C (59°F), and 14h00 at 25°C (77°F).

For temperature of 5°C during 22h00 no growth above 1 log is identified for the microorganisms studied. For the temperature below 10°C (50°F), *Listeria monocytogenes* is the exclusive microorganism to consider to evaluate storage duration limitations. For temperature of 15°C (59°F) and above *Listeria monocytogenes* and *Staphylococcus aureus* are the critical microorganisms to consider to evaluate storage duration limitations.

In case a product is not existing in the reference tables we suggest you measure pH and Aw of the product and refer to the tables to evaluate the pathogens growth. In case a specific event occurs (temperature abuse for a defined time) you can refer to specific tables defining time or temperature to achieve the unacceptable growth of each individual pathogen.

NB: The data presented are constructed on a worst case scenario with a continuous temperature of the product, an immediate growth of the bacteria (no lag phase) and no other intrinsic factors slowing or inhibiting the growth. Potential growth of 1 log or 2 log doesn't mean the product is contaminated by a pathogen. Not all existing products are present in the study, and pH and Aw value shared are examples, not covering the full variability of all food products. Always consider complementary data when you need a specific risk assessment including full time/temperature curves, multiple pH and Aw measurements on different product batches. Predictive microbiology should be completed with real historical data and/or challenge studies to evaluate pathogen growth on a specific product.

DOCUMENT AIM

The aim of the document is to provide key scientific data to support choosing relevant menus to limit microbial pathogen risks in air-catering specific storage conditions such as return catering. The document proposes critical time-temperature storage conditions depending on food products categories intrinsic characteristics.

I. CONTEXT

ACA is issuing guidance on good practices regarding Return-Catering. In this context ACA needs scientific support to determine the critical limits of storage time and temperature to avoid any issues with microbiological pathogens due to improper storage.

II. METHODOLOGY

Key steps

The specific risk link to inadequate storage conditions is the potential multiplication of bacterial pathogens to numbers that increase the immediate danger to human health. In order to consider this issue, the following elements are gathered in this document:

- Scientific justification of factors of growth/no growth and the relevant microorganisms based on bibliographical review

- Scientific justification of product categories based on major intrinsic factors (pH, Aw) using bibliographical data, ACA members' data and Mérieux NutriSciences' data

- Scientific justification of critical limits based on bibliography / Simulation with Sym'Previus predictive modelling

- Synthetic data covering the most probable scenarios of contaminations and temperature abuse.

The study is based on bibliographical and simulation data's, not on field experiments or testing.

Microbial pathogens Hazards (EFSA 2020, Ceylan E. 2021)

This document focuses on the main microbiological hazards (pathogenic microorganisms) to be taken into account when determining whether a food item is likely to constitute an immediate danger to human health and on the types of foods where these pathogenic microorganisms are more likely to be present. The document focusses on pathogens of concern in different types of food categories and the key determinants for growth are reviewed, with a focus on relevant bacterial pathogens capable of growing under reasonably foreseeable conditions:

- Duration: 4h00 to 24h00 considering time zero is when products leave the catering facility until time of consumption
- temperature from 5°C (41°F) to 25°C (77°F) extreme foreseeable temperature of the product.

The major pathogens, relevant for perishable food shelf life determination are presented in the table below (EFSA, 2020):

Guidance on date marking and food information part 1

EESA Journal 2020:18(12):6306

Table 1: Non-exhaustive summary of pathogenic microorganisms of relevance for date marking for different perishable food categories (including raw and processed prepacked foods)

	Group Genera/species	Food category of concern	Examples of food type
Gram-negative	Mesophilic		
(enteric) bacteria	Salmonella spp., pathogenic E. coli	Meat and products thereof	Raw pork meat, raw beef
		Fish and seafood	Shellfish
		Fruits and vegetables	Fresh cut/RTE vegetables (sprouts, spinach,) and fruits
		Milk and dairy products	Fresh/cottage cheese, raw milk
		Prepared/mix food	Prepared salads, sandwiches
	Psychrotrophic		
	Yersinia enterocolitica	Meat and products thereof	Raw minced meat
Gram-positive bacteria	Non-toxicogenic Listeria monocytogenes	Prepacked raw RTE food	Salads, fruit juices, fresh cut vegetables and fruits
		RTE food exposed to contamination after a processing step causing microbial inactivation	Cooked meat products, smoked fish, soft/semi-soft and fresh/ cottage cheese
	Toxicogenic Non spore forming Staphylococcus aureus	Meat and products thereof	Cooked meat products
		Fish and seafood	Cooked fish products
		Cheese and dairy products	Raw milk cheese, soft cheese
		Bakery products	Cream-filled pastries, pies
		Prepared meals	Fish dishes, meat dishes, cheese containing dishes
	Spore forming aerobic Bacillus cereus (Diarrheic and emetic)	Food of non-animal origin, particularly heat treated	Cooked dishes/meals containing pasta or rice, such as tabbouler rice salad, semolina, rice pudding
		RTE prepared/mix food/meals (REPFED)	Cooked vegetables and potatoes, vegetable puree Meat-based meals with non-animal components (sauce, vegetables)
		Milk and dairy products	Pasteurised milk and dairy products and desserts
	Spore-forming anaerobic psychrotrophic	Reduced atmosphere packed food, particularly heat treated (REPFED)	Salted fish, cooked meat products (paté, sausages), hummus
	non-proteolytic Clostridium botulinum mesophilic proteolytic Clostridium botulinum	Seafood and meat products	Canned fish (sardines, anchovies, tuna) and meat products (corned beef, pâté)

Note: Foods exempt from the requirements to indicate a 'best before' date or covered by other EU provisions imposing other type of date marking, and excluded from this opinion, are listed in Appendix A.

RTE: ready-to-eat; REPFED: refrigerated (minimally) processed foods of extended durability.

www.efsa.europa.eu/efsajournal

The document is considering critical pathogenic bacteria identified in catering hazard analysis that can be influenced by temperature abuse.

Targeted pathogens which are in this study cover a limited list. *Campylobacter* spp., *Shigella* and *Yersinia enterocolitica* do not appear here because they are typically controlled when the pathogens listed are addressed.

The microorganisms to be considered including maximum limits inducing health issues:

- Listeria monocytogenes	100 CFU/g, presence in 25g
- Staphylococcus aureus	100 000 CFU/g, toxins development
- Clostridium perfringens	100 000 CFU/g
- Bacillus cereus	100 000 CFU/g, toxins development
- Salmonella spp.	presence in 25g
- Escherichia coli STEC	presence in 25g

Product categories

Principle food categories covering classical air catering (breakfast, meals and snacks) are included in this document. Based on existing bibliographic data's including Combase database, a set of pH / Aw data's are compiled for each product category, completed by ACA and Mérieux NutriSciences anonymized data's.

Risk evaluation based on predictive modelling

The next step is the use of predictive microbiology to determine the growth/no growth of each microorganism depending on pH/Aw values of the different food products. The predictive modelling program used is Sym'Previus.

The models from the Sym'Previus simulation tools describe the bacterial response to temperature, pH, water activity (and in some cases, lactic acid concentration).

These models are based on the "Gamma" concept formulated by Zwietering *et al.* (1992). This concept is based on the observation that factors influencing bacterial growth (temperature, pH, Aw) have multiplicative effects on bacterial growth rate.

The growth models in Sym'Previus are defined by the cardinal values of a bacterial strain (e.g. minimum, optimal and maximum growth temperatures), using the approach developed by Rosso *et al.* (1993, 1995). Note that in the Sym'Previus software, field isolates have been prioritized over laboratory strains for data generation. For some bacteria such as *Listeria monocytogenes*, these cardinal values have been determined for up to 14 different field strains, allowing the intra-species variability to be taken into account in the model predictions. This approach does not consider other factors such as the lag phase, the microbial ecology or antimicrobial activities of specific ingredients, a more specific approach would need specific studies such as challenge studies.

Rules of judgment

The safety of 46 meal types is evaluated during 5 storage temperatures and 5 storage times when considering pH, water activity, and other relevant food safety data (such as specific process, for example "pasteurized cooked and uncooked pressed cheese" and "pasteurised soft cheese, bloomy rind and washed rind") as referenced in the scientific literature (Cf. Chapters V and VI).

For microorganisms with a target limit of absence in 25g (*Salmonella* spp. and *E. coli* STEC) the acceptable value doesn't include quantitative approach and no simulation will be applied considering exclusion of risk ingredients or food practice is the effective risk management measure. This approach is not developed in this study.

For microorganisms with a target limit of absence in 25g with a maximum of 100 CFU/g (*Listeria monocytogenes*), an increase of 1 log is considered as significant growth and the maximum tolerable growth assuming levels of *Listeria monocytogenes* will never exceed 10 CFU/g at production level due to supplier controls.

For microorganisms with maximum safety limits of 100 000 CFU/g (Staphylococcus aureus, Clostridium perfringens and Bacillus cereus) an increase of 2 logs is considered as a maximum tolerable growth to avoid reaching 100 000 CFU/g considering the maximum tolerable growth assuming levels of Staphylococcus aureus, Clostridium perfringens and Bacillus cereus will never exceed 1000 CFU/g at production level due to supplier controls.

Germs	Listeria monocytogenes	Clostridium perfringens	Bacillus cereus	Staphylococcus aureus
Limit of	< 0		< 0	
growth	> 0 and < or = 1	> 0 and < or = 2		
(log CFU/g)	> or = 1	> or = 2		

For each designated microorganism and the maximum tolerated growth, the interface growth /no growth will be presented including a colour code identifying critical limits with No growth (Green), limited growth (Orange), and critical growth (Red).

A final synthetic tool including product families, growth potential of relevant pathogens and time /temperature limits is included in the report taking into account 4 targeted time/temperature scenarios.

III. FACTORS INFLUENCING THE MICROORGANISMS DURING THE STORAGE

(EFSA 2020, NACMCF 2010)

Food production includes many key factors influencing the preservation of food such as heat treatments and the addition of ingredients and preservatives resulting in changes in pH (ex: addition of acids), in Aw (ex: addition of sugar, salt) or the concentration of antimicrobial substances (e.g. organic acids, curing salts).

The factors affecting the shelf-life in relation to microbiological safety of foods are those determining the growth of microorganisms in foods. The probability of growth and, in case of growth, the growth rate, will determine the time needed for the relevant microorganism to exceed the acceptable level.

The growth affecting factors may be classified into those that are intrinsic or associated with the food material and those that are extrinsic or associated with the environment surrounding the food.

This document focuses on the intrinsic (especially pH and Aw), and extrinsic (especially temperature) factors that determine which microorganisms can grow and their growth potential during subsequent storage until consumption.

A source of information for minimum limits for growth of pathogenic microorganisms is summarized in the table below and reports combinations of pH and Aw values that may allow their growth. (NACMCF 2010).

	pH values:					
a_w values	<3.9	3.9 to <4.2	4.2-4.6	>4,6-5.0	>5.0-5.4	>5.4
<0.88	NG ^c	NG	NG	NG	NG	NG
0.88-0.90	NG	NG	NG	NG	Staphylococcus aureus	S. aureus
>0.90-0.92	NG	NG	NG	S. aureus	S. aureus	L. monocytogenes S. aureus
>0.92-0.94	NG	NG	L. monocytogenes	Bacillus cereus	B. cereus	B. cereus
			Salmonella	Clostridium botulinum L. monocytogenes Salmonella	C. botulinum L. monocytogenes Salmonella	C. botulinum L. monocytogenes Salmonella
				S. aureus		Saimonena S. aureus
>0.94-0.96	NG	NG	1	S. aureus B. cereus	S. aureus B. cereus	B. cereus
>0.94-0.96	NG	NG	L. monocytogenes Pathogenic E. coli	C. botulinum	C. botulinum	C. botulinum
			Salmonella		1155	C. perfringens
				L. monocytogenes Pathogenic E. coli	L. monocytogenes Pathogenic E. coli	· · · · · · ·
			S. aureus	Salmonella	Salmonella	L. monocytogenes Pathogenic E. coli
				S. aureus	S. aureus	Salmonella
				Vibrio parahaemolyticus	V. parahaemolyticus	S. aureus V. parahaemolyticus
>0.96	NG	Salmonella	Pathogenic E. coli	B. cereus	B. cereus	B. cereus
			Salmonella	C. botulinum	C. botulinum	C. botulinum
			S. aureus	L. monocytogenes	L. monocytogenes	C. perfringens
			676765557267-5686V	Pathogenic E. coli	Pathogenic E. coli	L. monocytogenes
				Salmonella	Salmonella	Pathogenic E. coli
				S. aureus	S. aureus	Salmonella
				V. parahaemolyticus	V. parahaemolyticus	S. aureus
					V. vulnificus	V. parahaemolyticus V. vulnificus

TABLE 2. Potential pathogens^a of concern for growth studies based on interaction of product pH and a_w^{b}

^a Campylobacter spp., Shigella, and Yersinia enterocolitica do not appear here because they are typically controlled when the pathogens listed are addressed.

^b Data are based on the PMP (106), ComBase predictor (50), ComBase database (49), or peer-reviewed publications (11, 17, 45).

^c NG, no growth; when no pathogen growth is expected, but formulation or process inactivation studies may still be needed.

Intrinsic Factors

Intrinsic factors include water activity (Aw), pH and buffering capacity, nutrients, oxidation-reduction (redox) potential (Eh) and redox buffering capacity, antimicrobial substances naturally present in foods, and preservatives that are added or are produced by biological processes such as fermentation.

pH and Aw are the most important intrinsic factors to consider in assessing whether pathogenic microorganisms will grow in foods during their shelf-life.

Generally, it is accepted that foods with a pH below 3.9 or Aw below 0.88 do not support the growth or toxin production of foodborne pathogenic microorganisms, irrespective of the storage conditions (temperature, atmosphere...). However, other microorganisms, such as yeast and molds, could grow and cause spoilage (more of a quality concern than a food safety concern).

Combinations of pH and/ or Aw of non-heat-treated food (or heat treated but exposed to re-contamination) that inhibit the growth of any pathogen (vegetative or spore former) include (NACMCF 2010):

- Aw ≤ 0.88 or
- pH ≤3.9 or
- Aw \leq 0.96 and pH \leq 4.2
- Aw ≤ 0.92 and pH ≤ 4.6
- Aw ≤ 0.90 and pH ≤ 5.0

In **pasteurized foods**, where vegetative pathogens have been eliminated, the growth of pathogenic sporeforming bacteria and/or the toxin production is prevented when (NACMCF 2010; US FDA, 2017):

- pH ≤ 4.6 (i.e. acid or acidified food)
- Aw ≤ 0.92
- Aw \leq 0.95 and pH \leq 5.6

For foods with pH and/or Aw values above those just mentioned, **time/temperature control** for safety is required unless the Food Business Operators can show that other hurdles (such as natural antimicrobial substances or added preservatives) contribute to prevent microbial growth and/or toxin production (NACMCF, 2010).

Combining materials or ingredients to form multicomponent food products also modifies the intrinsic parameters, throughout the product or at the interface of components, depending on the type of product, resulting in new intrinsic parameters that also influence microbial growth. Multicomponent food products present more complex situations, especially at the interface of the dissimilar components, where there will be an equilibrium established in properties that affect microbial growth, which may alter the expected behaviour of pathogens during storage in either the food components or their composite.

Limit targets

In order to evaluate the potential hazard linked to a temperature deviation, limit targets should be considered for major pathogens such as *Listeria*, understanding that what is considered to be significant growth can vary depending on the region or regulating authority:

- **EU**, **Canada and Australia** consider the threshold as 0.5 Log_{10} for a significant growth of *Listeria* and no increase above 100 CFU/g should be achieved during shelf life. When food operator can guaranty punctual contamination of *Listeria monocytogenes* is < 10 CFU/g at production stage, an increase <1 Log₁₀ over the shelf life is acceptable.

- **US**, **FDA-inspected foods:** <1 Log₁₀ increase over two or more time intervals is the threshold for considering the microbial growth of biological relevance (Control of *Listeria monocytogenes* in Ready-To-Eat Foods: Guidance for Industry Draft Guidance, 2017).

- US, USDA-inspected foods: < 2 Log₁₀ increase over the shelf life of the product (USDA FSIS *Listeria* Guideline, 2014).

In this study, for *Listeria monocytogenes*, with a target limit of absence in 25g with a maximum of 100 CFU/g, an increase of 1 log is considered as significant growth and the maximum tolerable growth assuming levels of this germ will never exceed 10 CFU/g at production level due to supplier controls.

IV. RELEVANT MICROORGANISMS

A conversion table from Celsius to Fahrenheit degrees is available in the appendix VIII.2

IV.1. LISTERIA MONOCYTOGENES

General characteristics

History

Listeria monocytogenes was identified as a significant microbiological hazard in food after large foodassociated outbreaks were reported between 1980 and 1996 across Europe and North America. The 1981 Canadian outbreak that was traced back to cabbages used in coleslaw was what first spiked scientific interest (ICMSF 1996).

Taxonomy

Listeria are common environmental bacteria. The genus is comprised of at least 20 species, most of which have been identified in the last decade. The main pathogenic species of the genus is *Listeria monocytogenes* (Nwaiwu s. d.). *Listeria monocytogenes* is a gram-positive coccobacilli (short rods) (ICMSF 1996 ; Giaccone V., Ottaviani F. et al. 2007). It is a non sporing bacterium. Their size usually ranges around 0,4-0,5µm by 0,5-2µm, although they occasionally form cells up to 10µm in length (BIORISK2016SA0081Fi.pdf s. d. ; Allerberger 2003).

The disease

Symptoms

Listeriosis can be developed in two forms. A non-invasive form that usually goes undetected as it only presents with mild gastroenteritis, and an invasive form that can lead to permanent debilitation or even death, as it causes, in the worst cases, meningitis or septicemia (ICMSF 1996). Symptoms can appear 1 to 70 days after ingestion of a contaminated food, usually ranging between 1 to 4 weeks (CDC 2017).

Pathogenicity and virulence

Listeria monocytogenes enters all human cells and multiplies there in, inducing enzymatic lysis. This is why this bacterium has such a high virulence and can be very invasive. It is estimated that food contaminated at a dose in between 10² to 10³ CFU/g up to 10⁸ CFU/g can cause an episode of disease when ingested (Giaccone V., Ottaviani F. et al. 2007). According to these criteria, the WHO has set a safety threshold of 100 CFU/g in food (World Health Organization et FAO 2004 ; Guidelines | CODEXALIMENTARIUS FAO-WHO s. d.).

The dose-response relationship for this bacterium is highly dependent on an individual's defense mechanisms, including stomach acidity, and immune response (Rahman et al. s. d.). Natural intestine flora can also be a factor in dose-response.

Epidemiology

Population at risk	Death rate	Severe symptoms	Incidence rate on French population 2015 number cases /100 000 people
Pregnant women	20-30% (fetus or baby)	Neonatal infection	14.6
Immunosuppressed	30-40%		5.9 – 47
Chronically ill	20-30%	Neurological after effect	0.67-18.8
Elderly (over 65)	30-40%	enect	1.74
Immunocompetent	<5%	Rare bacteremia	0.13

Tableau 1 : Incidence of listeriosis by category of population

(ICMSF 1996 ; Giaccone, V., Ottaviani F. et al. 2007 ; Ricci et al. 2018)

95% of listeriosis cases in humans are caused by the ingestion of contaminated food (Giaccone V., Ottaviani F. et al. 2007). *Listeria* is the 4th cause of death due to foodborne diseases in the WHO European region (50607-WHO-Food-Safety-publicationV4_Web.pdf s. d.). The number of reported listeriosis cases in the UE between 2014 and 2018 has shown a slight increase of around 400 cases/year (EFSA and ECDC 2019 - The European Union One Health 2018 Zoonoses Report).

Growth characteristics General knowledge

Table 2 : Listeria monocytogenes growth limits				
Minimum Optimum Maximum				
Temperature	-1°C	30-37	45	
рН	4,3	7,0	9,4	
Water activity	0,92	-	-	

Listeria monocytogenes is a ubiquitous soil bacterium, it is found everywhere in the environment, particularly where animal feces can be found (wild or bred) (ICMSF 1996).

One of the main characteristics of *Listeria monocytogenes*, on top of its ability to grow at low temperatures, is its resistance to a high salt content. It can live on a product that has a concentration of up to 8-10% NaCI. Furthermore, as *Listeria monocytogenes* is facultatively anaerobic, food packaged under vacuum or nitrogen modified atmosphere are not immune to the survival or growth of the bacterium (Giaccone V., Ottaviani F. et al. 2007).

The acidity of the medium also plays a significant part in the growth of *Listeria monocytogenes*, with a pH level under 5, at low temperatures, the bacterium will, in most cases, show no growth (MRV Microbial Responses Viewer s. d.) The regulatory criteria for *Listeria monocytogenes* varies according to the type of food. In Europe, most foods that have a pH of 4.4 or less and an Aw of 0,92 or less, or pH 5 Aw 0,94 need to have no more than 100 CFU/g of product (COMMISSION REGULATION (EC) No 2073/2005 s. d.). Other types of food need an absence of the bacterium in 25g of product (AFSCA, Avis11-2019_SciCom2018-17_listerialaitcrubeurre_000.pdf s. d.).

Influence of storage

Listeria monocytogenes is capable of growth at low temperatures, however it has been shown that growth rates are significantly lower in products stored at appropriate refrigeration temperature (4°C or under) than at abuse temperature (over 4°C) (Colás-Medà et al. 2017). If the cold chain breaks, it is likely that the growth rate picks up again in the following hours (Kurpas, Wieczorek, et Osek 2018).

Concerns for the food industry and critical food types

The bacterium is widespread in the environment, and therefore can impact nearly any food industry from raw ingredients (meat, milk, vegetable...). Furthermore, it is a bacterium that has the ability to grow at low, fridge-like temperatures from -1°C to 4°C (Giaccone V., Ottaviani F. et al. 2007).

However, *Listeria monocytogenes* is sensitive to heat and inactivated at 72°C for 15 seconds or equivalent time/ temperature combination (ICMSF 1996).

One main food category of concern is prepacked, raw, ready to eat food such as raw cut fruits, unpasteurized cheeses or milk, salads... because no heat treatment is applied and refrigeration of the product will not stop growth if there is an initial contamination.

The second food category of concern is ready to eat food that has been exposed to contamination after inactivation treatments. These products have been identified as cooked meat products, smoked fish, soft/semi soft and fresh cheeses...(Koutsoumanis et al. 2021).

Raw, ready to eat food

As *Listeria monocytogenes* is an environmental bacterium, contamination for these types of products can occur pre-harvest or during harvest. Because there is no inactivating treatment for these products, the bacterium can multiply until consumption and an initial contamination that would not be harmful, can lead to contamination levels above 10³ and cause listeriosis (MARIK et al. 2019).

Some fruits and vegetables are more likely to be contaminated by the bacterium. Celery, cabbage ad melons are some of the preferred media of the bacterium. Moisture, topography, nutrient availability, and microflora are the main factors in *Listeria* growth. It also can be noted that fruits and vegetables that have been cut or damaged are more prone to contamination. It has been demonstrated that the bacterium targets these areas (Ziegler et al. 2019).

Ready to eat food contaminated after the inactivation treatments

Initial contamination for these products is often an effect of cross-contamination. For meat products for example, if the bacterium can be found in the processing environment, contamination post inactivating treatment is likely to occur (Kurpas, Wieczorek, et Osek 2018). The growth factors are similar to those on fruits and vegetables, with the addition that nitrites in cured meat can provide effective bacteriostatic activity against *Listeria* (BUCHANAN, STAHL, et WHITING 1989). Some of these products can also be re-heated until steaming hot to inactivate the bacterium (CDC 2019).

IV.2. STAPHYLOCOCCUS AUREUS

General characteristics

History

The significance of *Staphylococcus aureus* in food poisoning was first observed by Barber in 1914, from stocked, unrefrigerated, raw milk from a cow suffering mastitis (ICMSF 1996). Staphylococcal food poisoning is one of the most common foodborne diseases in the world (Hennekinne, De Buyser, et Dragacci 2012). Instances of outbreaks across Europe (Italy, 2015) (Ercoli et al. 2017) and the US (CDC 2012 - Outbreak of Staphylococcal Food Poisoning from a Military Unit Lunch Party — United States, July 2012 s. d.) have been observed in the last decade.

Taxonomy

Staphylococcus are gram-positive, cocci. The cells are 0.5 to 1 µm in size, and can be single, paired or form "grape like" clusters (Jan McClure et al. 2007). They are non-motile, facultative aerobes. Among over 40 species of *Staphylococcus* (Hennekinne, De Buyser, et Dragacci 2012), certain species possess the ability to produce enterotoxins. These enterotoxins are low-molecular weight singe chain proteins. 18 serological types have been identified (Jan McClure et al. 2007). *Staphylococcus aureus* is capable of producing these toxins and is of greatest concern for the food industry amongst its species. Amongst the more common toxins secreted by *Staphylococcus aureus* are hemolysin, leukotoxin, exfoliative toxin, enterotoxin, and toxic-shock syndrome toxin-1 (TSST-1) (Kong, Neoh, et Nathan 2016).

The disease

Symptoms

Staphylococcal food poisoning results from ingestion of the toxins produced during growth of the bacterium. Toxin ingestion causes the typical symptoms of food poisoning such as nausea, vomiting, abdominal cramps, diarrhea... Symptoms usually appear 1 to 7 hours after ingestion and rarely last more than two days (Jan McClure et al. 2007). Because of this, Staphylococcal food poisoning goes massively unreported, as only around 10% of patients with confirmed cases will seek medical advice.

Pathogenicity and virulence

The mode of action of the toxin is believed to be the stimulation of local neuroreceptors in the intestinal tract. As *Staphylococcus aureus* is not particularly invasive, it can still spread by causing lysis in a number of cell types (Jan McClure et al. 2007). The amount of toxins causing illness depends on the individual but 0.1 to 1 μ g/kg will generally cause illness in a human (ICMSF 1996). This amount of toxin is generally produced when *Staphylococcus aureus* reaches around 10⁵-10⁸ CFU/g in the stool of patients (Pinchuk, Beswick, et Reyes 2010; Jan McClure et al. 2007). The critical safety limit for this bacterium in food is set at 100,000 CFU/g (EUR-Lex - 02005R2073-20140601 - EN - EUR-Lex s. d.) while process criteria range most commonly from 100 to 1000 CFU/g.

Epidemiology

Table 3 : S. aureus risk and virulence by population category

Population at risk	Death rate	Severe symptoms
Healthy adult	0.03%	Dehydration
Elderly, children, immunocompromised	4.4%	Dehydration

Although there is no real population at risk as the effects of Staphylococcal food poisoning depends mostly on the individual's weight and exposure, certain categories of the population like the elderly, children or people with chronic illness are more prone to show symptoms (Jan McClure et al. 2007).

Growth characteristics

General knowledge

Staphylococcus aureus is ubiquitous, occurring in the membranes and skin of warm blooded animals, including all food animals and humans. At all times, up to 50% of humans can be carriers of the bacterium. Often in nasal or perineal passage but also; more rarely, on hands or other parts of the body. The bacterium is able to grow at low Aw and high salt content (Up to 10%) (ICMSF 1996).

	Minimum	Optimum	Maximum
Temperature	6°C	35-41°C	48°C
рН	4	6-7	10
Water activity	0.83	0.99	0.99

Table 4 : S. aureus growth limits

Table 3 : S. aureus toxins production limits

	Minimum	Optimum	Maximum
Temperature	10°C	34-40°C	45°C
рН	0	0-4	10
Aw	0.86	0.99	0.99
Anaca d)	-		

(Anses s. d.)

Influence of storage

Toxin formation in *Staphylococcus aureus* is unlikely at temperatures lower than 10°C, making the maintenance of the cold chain a crucial aspect of keeping food safe from this bacterium. Exposure of more than 12 hours at temperatures between 10°C and 21°C, and greater than 3 hours above 21°C can result in toxin formation (FDA. Fish and Fishery Products Hazards and Controls Guidance s. d.). A study indicated abrupt growth/no growth interfaces occurred at low levels of temperature, pH and A_w . At 8 °C, *Staphylococcus aureus* grew only at optimum levels of pH and A_w while at temperatures above 13 °C, growth of *Staphylococcus aureus* was observed at pH = 4.5 and $A_w = 0.96$ (13°C), 0.941 (16°C) and 0.915 (19°C). The optimal pH at which growth of *Staphylococcus aureus* was detected earlier was 6.5. However, a slight decrease of the probability of growth was noticed in the pH interval of 7.0–7.5 at more stringent conditions (Valero et al, 2009).

Concerns for the food industry and critical food types

The bacterium is carried by healthy humans; therefore, cross contamination is likely in the food industry when human manipulation is involved. It is also carried by food animals, making contamination from the raw animal's ingredients source a possibility. *Staphylococcus aureus* competes poorly with other bacteria contaminating raw products. But it can grow at very low Aw. (ICMSF 1996). The bacterium is sensitive to heat and can be inactivated by 2 minutes at 70°C or equivalent tie-temperature combination (Kennedy et al. 2005). However, the toxins are very heat resistant and will not be affected by the treatment, rendering illness likely for the consumer if heat treatment is applied too late (Anses s. d.).

According to all these criterias, the main concern for the food industry is food from animals (milk, cheese, meat) and food that has been precooked, handled, packaged and then stocked for a few hours (3 hours to a few days depending on temperature) before consumption.

Food from animal origin

As an animal can be a carrier of *Staphylococcus aureus*, contamination can happen directly from the animal at the first production stage (slaughtering...) (EFSA 2012 - Technical specifications on the harmonised monitoring and reporting of antimicrobial resistance in methicillin-resistant Staphylococcus aureus in food-producing animals and food 2012). In processed meat products, *Staphylococcus aureus* growth can be slowed or stopped with the use of modified atmosphere or nitrites (CASTILLEJO-RODRÍGUEZ et al. 2002).

In cheese products manufactured with raw milk, the majority of the growth of *Staphylococcus aureus* at abuse conditions occurs within the first 6 hours of storage after inoculation and quickly reaches its maximum potential at around 24 hours (DELBES et al. 2006).

Pre-cooked food

Staphylococcal food poisoning occurs mostly by ingestion of food that has been cooked, contaminated by a person and then kept under warm conditions (20-40°C) for several hours (ICMSF 1996). As shown by various studies, at temperatures under 8°C, even after contamination of a pre-cooked product, most cases show no growth (potato salad and tuna), as with storage temperatures above 47°C (Huang 2015; Wu et Su 2014).

IV.3. CLOSTRIDIUM PERFRINGENS

General characteristics

History

Clostridium perfringens was associated with diarrhea as early as 1895. The role of this bacterium in foodborne illnesses was recognized in 1943 (ICMSF 1996). From 1998 to 2010 in the US, 289 confirmed outbreaks of foodborne illnesses where attributed to *Clostridium perfringens* (Grass, Gould, et Mahon 2013).

Taxonomy

Clostridium perfringens is a gram positive, square-ended, large (1 to 1.5 µm in diameter) anaerobic bacillus. It is a member of the bacillaceae family. The *Clostridium* genus comprises at least 12 lineages (Johnson 2009).

Clostridium perfringens produces at least 14 different toxins as a species but an individual cell will only produce a defined subset of these toxins. Types A, C and D affect humans (Vernozy-Rozand et al. 2007). Food poisoning cases almost always involve Type A toxins and to a lesser extent, type C (ICMSF 1996).

The disease

Symptoms

Type A toxins causes general symptoms of food poisoning such as vomiting, diarrhea, abdominal cramps... Symptoms appear 8 to 24 hours after consumption and recovery is achieved after 24 to 48 hours. As a result of dehydration, death can occur in weaker patients.

Type C toxins requires 5-6 hours before sudden and severe symptoms such as abdominal pain and diarrhea occur. It is generally followed by necrotic inflammation of the small intestine (also known as Darmbrand or Pigbel syndrome). This illness is much more likely to cause death of the patient, and it occurs in 15-25% of cases (Vernozy-Rozand et al. 2007).

Pathogenicity and virulence

As *Clostridium perfringens* is particularly sensitive to stomach acidity, the food ingested has to be contaminated to a high level in order to allow contamination of the host. From investigated outbreaks, around 10⁸ vegetative cells/serving are necessary to cause symptoms. The vegetative cells that survive stomach acidity have the ability to sporulate in the intestine. The mother cell undergoes lysis, freeing the spores and releasing the toxin. The toxin released is then converted to a more active toxin by its environment, binds to cell receptors and creates pores in their membranes, causing the disease (Vernozy-Rozand et al. 2007; ICMSF 1996).

Epidemiology

Clostridium perfringens is a serious hazard representing up to 17% of all foodborne diseases confirmed cases in France in 2015 (Anses, 2017 s. d.). The A strain is the second most common cause of bacterial food poisoning in the US. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4383721/ Type C is less common but far more dangerous as it has a mortality rate of 15-25% in patient that are diagnosed with the illness. No group of people is more sensitive to the bacterium (Vernozy-Rozand et al. 2007).

The commission regulation for microbiological criteria on foodstuff does not set a limit on the presence of *Clostridium perfringens* (EUR-Lex - 32005R2073 - EN - EUR-Lex s. d.). However, most countries have 10⁵ CFU/g of product set as the safety criteria upper limit (Vernozy-Rozand et al. 2007).

Growth characteristics General knowledge

	Minimum	Optimum	Maximum
Temperature	10	40-45	52
рН	5	6-7	8,3
Water activity	0.95	0.99	-
Anses, 2017 s. d.)			

Table 1 : C. perfringens growth limits

Clostridium perfringens is a ubiquitous bacterium, it can be found in soil, water, dust, the surface of vegetables and the environment. Healthy humans and animals can be carriers in their intestinal tract, shedding up to 10³ CFU/g of feces. This bacterium can withstand up to 6,5% NaCl in its growth medium (Anses, 2017 s. d.).

Vegetative cells have an optimum growth temperature of 40-45°C and inactivate at 60°C for 5 minutes. Spores are heat resistant, but will significantly decrease at temperatures 90°C to 100°C for 10-30 minutes (Vernozy-Rozand et al. 2007 ; Talukdar et al. 2016). Sporulation is essential to *Clostridium perfringens* pathogenicity, as the production of enterotoxin type A (the most common), occurs during the sporulated state (Li et al. 2016).

Influence of storage

During storage, it is important to prevent the growth of vegetative cells and sporulation, as these are the two forms of the bacterium that can cause illness later on. In a study on pork meat, no growth of *Clostridium perfringens* was observed for a period of 21 days at 10-12°C. In Ham, no growth was observed for 21 days at 17°C, going against the assumption that growth occurs from 15°C and above. Both studies where performed after heat treatment of the products and appropriate cooling technique (Juneja, Huang, et Thippareddi 2006). This proves that product characteristics also play a role in adequate product conservation. In fact, appropriate use of a combination of sodium tripolyphosphate, sodium lactate and NaCl can effectively prevent growth even in optimum conditions of 47°C for 24 hrs (Huang, Li, et Hwang 2018).

Concerns for the food industry and critical food types

Clostridium perfringens is a bacterium that is found in soil, dust, vegetation and the intestinal tract of humans and animals. It can be found in a wide variety of food, raw, dehydrated or cooked (ICMSF 1996). However, meat and carcasses are the most common vectors of the disease. It has been shown that about 50% (30-80%) of raw, frozen meat and poultry contain *Clostridium perfringens* (Vernozy-Rozand et al. 2007). Although a few cases of outbreaks have been reported on other types of food such as spinach or bean curd, these occurrences are rarer (8% of the reported outbreaks) (Grass, Gould, et Mahon 2013) (EFSA 2013 - Scientific Opinion on the risk posed by pathogens in food of non-animal origin. Part 1 (outbreak data analysis and risk ranking of food/pathogen combinations).

Meat is often vacuum packed in order to prevent the growth of bacteria. Unfortunately, *Clostridium perfringens* shows growth in vacuumed environments (Hassanien-Faten et al. 2014). That and its ability to form spores and increase its heat resistance make the bacterium a real threat to the meat industry. Heat treatment above 70°C immediately before consumption will kill *Clostridium perfringens* vegetative cells and inactivate the pre-existing toxins (Vernozy-Rozand et al. 2007). Spores have a higher heat resistance and will only be inactivated at temperatures of 90-100°C for 10-30 minutes (Talukdar et al. 2016). The FDA Food Code dictates that potentially hazardous cooked foods such as meats should be cooled from 60 to 21 °C within 2 h, and from 60 to 5 °C within 6 h (FDA 2020). In U.K., it is recommended that uncured cooked meats be cooled from 50 to 12 °C within 6 h and from 12 to 5 °C within 1h (Juneja, Huang, et Thippareddi 2006).

Meat Based Product

As stated before, meat products (raw, cooked and cured) are the most commons source of outbreaks. Studies have shown that the better mean of conservation for these products is to keep an internal temperature of 5-10°C as to restrict growth of the bacterium. Reports of *C. perfringens* vegetative cell growth on a 3 day period at 12-15°C show the importance of cold storage (Juneja, Huang, et Thippareddi 2006).

IV.4. BACILLUS CEREUS

General characteristics

History

Bacillus cereus has been identified more than a century ago, in the early 1900s. It is well known as a foodborne pathogen and has caused significant outbreaks over the years (ICMSF 1996). Annual reports of the European Food Safety Authority (EFSA) show that "bacterial toxins other than *Clostridium botulinum*", including *Bacillus cereus*, generally account for 16–20% of food-poisoning outbreaks. From 2011–2015, 220–291 annual outbreaks associated with *B. cereus* were reported in several member states, which accounted for approximately 3.9–5.5% of all annual food poisoning outbreaks (Jessberger et al. 2020).

Taxonomy

Bacillus cereus is a Gram positive, spore-forming and facultative anaerobic rod. The genus is divided into three groups, based on spore and sporangium morphology. Group I, which includes *Bacillus cereus*, are defined as having a sporangium that is not swollen by the spore. It is one of the larger one in the group, with a size of over 0.9 μ m in diameter (ICMSF 1996).

The disease

Symptoms

There are two form of *Bacillus cereus* food poisoning. The first is characterized by diarrhea occurring 8-24 hours after ingestion of a large number of cells or toxin, which is normally not severe and subsides within 24 hours. The second form of the disease is characterized by emesis occurring within 1 to 6 hours of consumption, with recovery taking 12-24 hours. None of the two forms should be considered life threatening for a healthy individual (ICMSF 1996).

Pathogenicity and virulence

Toxins are produced during the exponential phase of growth. *Bacillus cereus* produces two main toxins that cause illness. The diarrhoeagenic toxin that causes vascular permeability and is toxic to Vero cells and the emetic (cereulide) toxin.

Bacillus cereus outbreaks are often associated with foods that have a concentration of over 10⁵ CFU/g, but there have been cases of food poisoning from foods contaminated at 10³ CFU/g (EFSA 2016 - Risks for public health related to the presence of *Bacillus cereus* and other *Bacillus* spp. including *Bacillus thuringiensis* in foodstuffs 2016). Emesis can occur at toxin concentrations of 5-10 µg/kg of body mass. Such concentrations can be reached at around 10⁶ CFU/g of product ingested (ANSES, 2021 s. d.).

Epidemiology

The real number of cases per year is difficult to obtain because the outbreaks go massively unreported. Indeed, the disease is rarely life threatening and symptoms only last for a short period of time, leading few patients to seek medical help.

No category of the population is more sensitive to this bacterium, although some severe cases were found in people with Crohn's disease or in premature babies, although no correlation can be definitively made (ANSES, 2021 s. d.).

Because the contamination levels have to be high to cause illness, the safety criteria on *Bacillus cereus* in food is at 100,000 CFU/g of product while process criteria commonly used by professionals reach from 100 to 1000 CFU/ (COMMISSION REGULATION (EC) No 2073/2005 s. d.).

Growth characteristics

General knowledge

Spores of *Bacillus cereus* are found in soil at concentrations of the order of 10⁴ to 10⁵ spores per gram of soil. *Bacillus cereus* spores are also present in the digestive tracts of warm-blooded animals. It is spread across the environment and therefore can be isolated from all categories of foodstuff. There is a significantly higher risk for prevalence in starchy foods (flour, rice, pastries...) and cooked, chilled foods (EFSA 2016 - Risks for public health related to the presence of *Bacillus cereus* and other *Bacillus* spp. including *Bacillus thuringiensis* in foodstuffs 2016). While vegetative *Bacillus cereus* cells can mainly be eliminated by mild heat treatment, spores are able to survive high temperatures, such as pasteurization or spray drying of milk. Due to this survival and adjacent outgrowth of the competing microflora, growth of B. cereus occurs more often in pasteurized than in raw milk.

	Minimum	Optimum	Maximum	
Temperature	4°C	30-37°C	55°C	
рН	4.3	6-7	9.3	
Water activity	0.92	0.99-1	-	
NaCI (g/L)	-	-	50	
(ANSES 2021 s.d.)				

Table 5 : Bacillus cereus growth limits

(ANSES, 2021 s. d.)

Table 6 : Emetic toxin production limits

	Emetic toxin		
	Min Max		
Temperature	10°C	40°C	
рН	2	9	
NaCl	0%	5%	
CO ₂	0%	40-50%	

(Finlay, Logan, et Sutherland 2000; ANSES, 2021 s. d.)

Table 7 : Toxins inactivation

	Emetic toxin	Diarrhoeagenic toxin
Time/ Temperature of inactivation	90 min/ 126°C	30 min/ 56°C
рН	2-11	No data

(Dietrich et al. 2021)

The destruction of the sporulated form of *Bacillus cereus* is obtained at 105°C for 1 minute in soy (Ryang et al. 2016).

Bacillus cereus is divided in seven genetic groups; each of them has a different heat tolerance and pathogenicity. Strains that have the ability to grow at low temperature (5-9°C) are not usually involved in foodborne outbreaks (ANSES, 2021 s. d.).

In summary, the foodstuffs which favor Bacillus cereus survival, spore germination and outgrowth are those with suitable pH value (approximately 5-7.5), Aw value (minimum approximately 0.91-0.95), little or no competing microflora, which are additionally improperly heated or stored (Jessberger et al. 2020).

Influence of storage

Although growth is unlikely to cause illness under 10⁵ CFU/g, indication of growth and possible toxin production at cool temperatures (10-12°C) testify to the fact that refrigeration is necessary to stop food poisoning by this bacterium.

Studies have shown germination and growth (up to 100 CFU/g or ml food) of psychrotolerant members at low temperatures (4-10 °C) during transport and storage. In this context, it was shown that fatty acids from foods enhance growth of Bacillus cereus under cold and anaerobic conditions (Jessberger et al. 2020).

Concerns for the food industry and critical food types

As Bacillus cereus sporulates and creates a heat resistant toxin, its inactivation is a hard process as a long and harsh heat treatment can modify the aspect or taste of food.

Moreover, some of the strains of this bacterium can grow at a wide range of temperatures close to 6°C, and up to 50°C. The vegetative cells are sensitive to heat treatment but it will not prevent illness if the toxin is already formed or if there is presence of sporulated cells (EFSA 2016 - Risks for public health related to the presence of Bacillus cereus and other Bacillus spp. including Bacillus thuringiensis in foodstuffs 2016). Bacillus cereus is wide spread in the environment, which helps cross contamination. A wide range of foods can be contaminated by this bacterium. It is mostly present in foods that have already undergone a heat treatment, as it doesn't perform well when competing with other bacteria, but can survive heat treatment and colonize afterwards. In regards to this, pasteurized milk products, dried ingredients (flours, herbs, spices) and improperly chilled pre-cooked foods are the most common sources of outbreaks (ANSES, 2021 s. d.).

The European Food safety agency states that growth to numbers representing a hazard is limited by refrigeration. Below 10°C, only a minority of the strains present in a food product will be able to grow. According to the same report, no emetic toxin producing cells have been identified to grow below 10°C, and no diarrhoeagenic toxin producing cells have been identified to grow at less than 7°C (EFSA 2005 - Opinion of the Scientific Panel on biological hazards (BIOHAZ) on *Bacillus cereus* and other *Bacillus* spp. in foodstuffs 2005).

IV.5. SALMONELLA SPP.

General characteristics

History

Salmonella was first reported in the 1900s as a contagious agent responsible for the ulceration of human intestinal tract (ICMSF 1996). It is to this day a great threat to the public and causes outbreaks of foodborne diseases. In 2018, EU Member States reported 5146 *Salmonella* foodborne outbreaks affecting 48365 people, it is the most common cause for foodborne outbreaks (ECDC 2019 - *Salmonella* the most common cause of foodborne outbreaks in the European Union).

Taxonomy

Salmonella spp. is a generic term that currently include more than 2,541 serovars all pathogenic to humans. Salmonella belongs to the family Enterobacteriaceae. They are Gram negative, facultatively anaerobic, rod-shaped bacteria. The genus consists of two species *S. enterica* and *S. bongori* (2,519 and 22 serovars respectively) (D'Aoust et al. 2007). In the *S. enterica* species, *S.* Typhimurium is one of the most invasive and virulent along with *S.* Paratyphi (McWhorter et Chousalkar 2015; Swearingen et al. 2012).

The disease

Symptoms

The symptoms of *Salmonella* Typhi / Paratyphi infection are known as enteric fever, 7-28 days following exposure to the pathogenic agent, diarrhea, spiking fever, abdominal pain and headache may appear lasting up to 30 days. Infection from other strains will develop symptoms 8-72 hours after exposure and be self-limiting in a period of 5 days. These symptoms are abdominal pain, diarrhea and slight fever (D'Aoust et al. 2007). In the worst cases, bacteremia or septicemia may appear and seriously endanger the life of patients or cause long lasting damage (ICMSF 1996).

Pathogenicity and virulence

Salmonella invades the lumen of the small bowel where they multiply, then the ileum and colon, causing an inflammatory reaction. Invasive strains penetrate the intestinal mucosa, lymphatic system and are engulfed by phagocytes within which they multiply. They then re-enter the blood stream causing septicemia (ICMSF 1996).

There are wide differences in infectivity associated with survival of the bacterium during transit through the stomach, the food associated with the outbreak, water ingested by the host and so on. The infectious doses ranges from 10⁷ CFU/g to 1-100 CFU/g (ICMSF 1996).

Epidemiology

Population at risk	Death rate	Severe symptoms	Incidence rate in Europe 2017 (number cases/ 100.000 people)		
Children (0-4)		D. (94.1		
Children (5-14)	0.25%	Bacteremia, septicemia	37		
Immunocompetent		Septioenna	19.6		

Table 8 Salmonella incidence by category of population

(ECDC 2017 - Salmonellosis-annual-epidemiological-report-2017.pdf s. d.)

Because the implications of the disease can be severe and the infectious doses very low, the European commission with the scientific advice of EFSA, stated that there should be an absence of *Salmonella* in 25g n=5 of food to meet safety criteria (COMMISSION REGULATION (EU) No 209/2013 s. d.).

Growth characteristics General knowledge

Table 9 : Salmonella growth limits

	Minimum	Optimum	Maximum	Survival
Temperature	5°C	35-37°C	50°C	-23°C
pH	3.8	7-7.5	9.5	-
Water activity	0.94	0.99	0.99	0.3-0.5

Salmonella is capable of growth at high temperatures and extreme values of pH, and survives in very abusive conditions of freezing and low Aw.

The bacterium can be found in the intestinal tract of most animals (cattle, pigs, poultry...) and aquatic animals such as fish and shells. Food produced from animals is the most common type of food to be contaminated. However, the environment can be contaminated by animal feces, raw vegetables can also be a vector of the bacterium (Anses, 2017 s. d.).

Influence of storage

Studies on broth medium show *Salmonella* growth at 7°C and 10°C on a period of 6 days, but very little at 4°C (Morey et Singh 2012). These results corroborate a study on eggs, in which eggs held at 4°C showed less growth of the bacterium than those stored over 4°C (C. J. Kim et al. 1989). Multiple authors recommend that food should be stored at no more than 5°C to prevent *Salmonella* growth (MATCHES et LISTON 2006).

Concerns for the food industry and critical food types

Contamination to humans mostly occurs by consumption of raw or insufficiently cooked foods. Foodborne contamination is responsible for 95% of non-typhoidal strain case and 80% of typhoidal strain cases with *S*. Typhi and *S*. Paratyphi being a human to human contamination (Anses, 2017 s. d.).

Salmonella is a very resistant bacterium (freezing, very high and low pH, resistance to nitrite salts...) (Anses, 2017 s. d.). It is sensitive to heat over 65°C, a heat treatment of 65-80°C for 30-60 minutes will inactivate and kill the bacterium (J. Kim et al. 2012).

The products that are commonly exposed to contamination are raw meat, eggs and poultry as well as dairy products, raw fish and shells and lastly, raw vegetables. The same categories of product might be contaminated after heat treatment or being cooked (D'Aoust et al. 2007).

Exclusion of risk ingredients and food preparation practices such as undercooked meat or raw eggs is a key management measure for *Salmonella*.

Meat, poultry and eggs

In ground pork meat held at 10°C for 12 days, an increase of under 2 log of *Salmonella* was detected, the bacterium was undetectable after heat treatment, proving its efficiency against *Salmonella* (Wang et al. 2015). In liquid whole eggs, *Salmonella* growth is only detectable above 10°C (Y.-J. Kim et al. 2018).

Dairy

Salmonella behaves differently in different kinds of cheese: they survived in ripening Cheddar cheese for up to 7 month at 13°C and for 10 month at 7°C (El-Gazzar et Marth 1992). In brie cheese *Salmonella* increased at 20°C but declined at a slow rate during storage at 4°C and 8°C (Little et Knøchel 1994).

Fish and shell fish

The FDA stated that *Salmonella* is the most common contaminant in fish and fishery products. The minimum growth reported for strains of *Salmonella* that contaminate fish and shell fish is around 6.2°C, authors recommend these products should be transported at temperatures below 4.4°C for safety (Mahmoud 2012).

Even though vegetables are not the preferred medium of *Salmonella*, the bacterium is capable of growth, as shown by a study in which 2 log growth was detectable under 48 hours at room temperature storage (Wells et Butterfield 1999). Authors recommend these products should be kept at 4°C or less.

IV.6. ESCHERICHIA COLI STEC

General characteristics

History

E. coli has been identified over a century ago and by the 1940s, its role as an enteropathogen was firmly established (ICMSF 1996). *E. coli* STEC are *E. coli* that possess stx genes coding for Shiga toxins, they are also called verocytotoxin-producing *Escherichia coli* (Vernozy-Rozand et al. 2007). Although it is a well know bacterium, the scope of pathogenicity is still under discussion and it continues to cause major foodborne outbreaks as those due to fresh sprouts in Europe in 2011 (WHO 2011) or in ready to eat leafy greens in the US in 2020 (CDC 2020).

Taxonomy

E. coli are members of the family *Enterobacteriaceae*. They are Gram negative, facultatively anaerobic short rods (ICMSF 1996). The genus *Escherichia* includes five species. However, these are not all responsible for causing diseases.

The diarrhoeagenic *E. coli* are divided into seven pathotypes based on virulence traits and

mechanism of pathogenicity and include the Shiga toxin-producing *E. coli* (STEC), Enteropathogenic *E. coli* (EPEC), Enterotoxigenic *E. coli* (ETEC), Enteroinvasive *E. coli* (EIEC), Enteroaggregative *E. coli* (EAEC), Diffusely Adherent *E. coli* (DAEC) and Adherent Invasive *E. coli* (AIEC).

The diarrhoeagenic *E. coli* are divided into seven pathotypes based on virulence traits and mechanism of pathogenicity and include the Shiga toxin-producing *E. coli* (STEC), Enteropathogenic *E. coli* (EPEC), Enterotoxigenic *E. coli* (ETEC), Enteroinvasive *E. coli* (EIEC), Enteroaggregative *E. coli* (EAEC), Diffusely Adherent *E. coli* (DAEC) and Adherent Invasive *E. coli* (AIEC).

Historically, Enterohaemorrhagic *E. coli* (EHEC) were considered a subset of STEC associated with haemorrhagic colitis. However, the EHEC terminology is now obsolete (Koutsoumanis et al. 2020).

STEC bacteria harbor the stx gene (stx1 or stx2) responsible for a toxin similar to the Shiga toxin, and also carry the eae gene (attaching/effacing) and form distinctive lesions on the surfaces of intestinal epithelial cells (Koutsoumanis et al. 2020).

In 2019, the five most commonly reported serogroups in Europe were O157, O26, O146, O103, and O91 (ECDC 2019 - Epidemiological Report-STEC-2019.pdf s. d.). In the US, the top five most commonly reported serogroups in 2016 were O157, O26, O103, O111 and O121 (CDC 2016 - National Enteric Disease Surveillance 2019).

The disease

Symptoms

The most common symptoms of the disease are hemorrhagic colitis or bloody diarrhea, fever and abdominal cramps, noted in 90% of cases. In children and elderly people, the symptoms can become more complicated with the development of Hemolytic Uremic Syndrome or thrombotic thrombocytopenic purpura in which red blood cells and platelets are destroyed, causing excessive blood clots (Vernozy-Rozand et al. 2007).

Pathogenicity and virulence

To have pathogenic activity, *E. coli* cells first need to survive stomach acidity. Then, a period of colonization of the digestive tract is necessary. STEC strains are capable of producing attaching-effacing lesions to assist in colonization. Then, the Shiga toxins have to cross the intestinal epithelium, and bind with the specific receptors of target cells (intestinal, renal and cerebral level) to block their protein synthesis and induce death (Vernozy-Rozand et al. 2007).

It is worth noting that some of the virulence factors for these strains have been acquired by genetic exchange through horizontal transfer, with bacteriophages playing an important role (Vernozy-Rozand et al. 2007).

An estimated dose-response has been made for O157:H7, of 5-10 CFU/g in cheese. In an outbreak of STEC O111:H- associated with fermented sausage, the estimated exposure dose was 1 cell per 10 g. This indicates that *E. coli* STEC can be pathogenic at very low doses of 1 CFU/g (Koutsoumanis et al. 2020).

Epidemiology

Table 10 E. coli STEC risk and virulence by population category

Population at risk	Death rate	Severe symptoms	Incidence rate Europe 2019 (100.000 plp)	
Children (under 5)			10.3	
Children (6-10)	5%	HUS	3	
Elderly (over 65)			2.5	
Immunocompetent	3%	HUS	2.2	

(Anses, 2019 s. d. ; WHO 2018 ; ECDC 2019 - Epidemiological Report-STEC-2019.pdf s. d.)

Following the 2011 outbreak, the European commission with the scientific advice of EFSA, stated that there should be an absence of *E. coli* STEC in 25g, n=5 of food to meet safety criteria (COMMISSION REGULATION (EU) No 209/2013 s. d.).

Growth characteristics

General knowledge

Table 11	: E .	coli	STEC	growth	limits
----------	--------------	------	------	--------	--------

	Minimum	Optimum	Maximum
Temperature	6	40	45
рН	4.4	6-7	9
Water activity	0.95-0.96	0.995	-

E. coli is capable of growth in a medium with a concentration of up to 8.5% NaCl. This bacterium is common in the intestinal tract of ruminant animals such as bovines. Other animals, like game can be healthy carriers for the bacterium. Soil, water and even crops can be cross contaminated by the animal's feces (Anses, 2019 s. d.).

Influence of storage

Various studies have shown that conditions of transport and storage of foodstuff do have an impact on the development of *E. coli* STEC (Leclair et al. 2019). Storage temperature has been identified as one of the main factors affecting growth, with a tendency to show no growth under 4°C, very little growth in between 5-9°C and significant growth above 15°C (study on 14 days) (Chauret 2011). In all products, heat inactivation at 70°C remains the most effective method to inactivate the bacterium.

Concerns for the food industry and critical food types

Because the main carrier for this bacterium is bovines and ovines, dairy products and meat from them is most likely to be contaminated. Crops watered with contaminated water can also cause outbreaks if their product is eaten raw (Anses, 2019 s. d.).

Although *E. coli* STEC is particularly resistant to acidic environments and quite resistant to salt, they are sensitive to heat treatments of 70°C for 2 minutes or equivalent time-temperature combination. Raw products and products contaminated post heat treatment are the main source of outbreaks (Vernozy-Rozand et al. 2007).

As the initial contamination to cause illness is very low and regulation on this bacterium in food is very strict, it is a main concern to the industries producing these types of food. In the European region the STEC food-borne disease burden was attributed to six food categories: beef was estimated to be the major food source, followed by dairy products and vegetables (Koutsoumanis et al. 2020).

Exclusion of risk ingredients and food preparation practices, such as undercooked meat, is a key management measure for *E coli* STEC.

Beef meat

In a study on ground beef, the minimal temperature for growth of this bacterium has been identified at 7.7°C (Hwang et Huang 2018). Some have also shown differences in growth according to the cut of beef (brisket and rump) but conclude that temperatures under 5°C are best to prevent growth and 5-10°C show little growth in a period of 14 days (Chauret 2011).

Dairy products

In raw unpasteurized milk, no change in the viable population was detected during 14 days with storage at 8°C for some strains, and multiplication from days 9 to 17 for other strains (Massa et al. 1999). In cheddar cheese made from unpasteurized milk and spiked with *E. coli* O157:H7, survival was observed for at least 120 days at 7°C (Chauret 2011). Authors recommend to keep dairy products at temperatures below 5°C.

Vegetables

In a field study, irrigation water containing various levels of *E. coli* O157:H7 was used to spray lettuce and spinach leaves. Storage temperature was shown to have a significant impact on the fate of *E. coli* O157:H7 on lettuce and spinach, with very little growth below 8°C, but moderate growth above 8°C and significant growth above 12°C (Chauret 2011).

V. PRODUCT CATEGORIES

In the document, 46 families are described according to the different categories of products composing the menus. More precisely, the categories were determined according to the type of dish (snack, meals, desserts...), the food processing (raw, cut, cooked, cured, ...), the ingredients (vegetables, animal origin products, starchy food...) and their intrinsic characteristics, including pH and Aw values. Please find in appendix the composition of the different families with examples of products and other pH and Aw values. Simulations in the next part of the document were conducted with the most sensitive and representative couple of pH/Aw of each family according to the collected data's. These families are listed below.

	FAMILY	TARGET PRODUCT	рН	Aw
1	Raw vegetables sliced seasoned	vegetables aïoli	6,25	0,997
2	Raw vegetables sliced unseasoned	avocado, beans	6,50	0,996
3	Cooked cold vegetables	roasted peppers	4,34	0,985
4	Meat delicatessen cured	cured meat, coppa	6,07	0,950
5	Meat delicatessen cooked	cooked ham	6,23	0,990
6	Cooked hot foods*	quiche lorraine (eggs, smoked bacon, cream)	6,37	0,983
7	Soups	vegetables soup	6,41	0,997
8	Salad with raw and/or cooked vegetables with starchy foods	napoli pasta salad	5,08	0,994
9	Mixed salads with raw vegetables and/or cooked vegetables with PAO**	rice vegetables surimi salad	4,94	0,992
10	Cooked cold food (other)	minced roasted chicken	6,22	0,992
11	Raw fish	fresh fish	6,80	0,997
12	Processed fish	cold smoked salmon	6,27	0,980
13	Cooked egg products	hard-boiled egg	7,60	0,970
	Cold sandwiches	cheese sandwich	5,37	0,968
15	Cold sandwiches with cured meat	sandwich with Serrano ham	5,82	0,913
16	Cold sandwiches with cooked meat and fish (pork, poultry, beef, tuna)	minced chicken sandwich	6,19	0,990
17	Cold sandwiches with raw vegetables	ciabatta veggie	5,18	0,973
18	Cooked dishes with PAO with starchy foods without vegetables*	hash Parmentier	6,27	0,990
	Cooked dishes with PAO with starchy foods with vegetables*	Bolognaise pasta	5,58	0,990
	Cooked dishes with PAO without starch without vegetables*	breaded fish	6,76	0,994
21	Cooked dishes with PAO without starch with vegetables*	veal blanquette	6,08	0,995
22	Cooked dishes without PAO with starchy foods without vegetables*	cooked rice	6,40	0,997
23	Cooked dishes without PAO with starchy foods with vegetables*	vegetables gratin	6,30	0,992
	Cooked dishes without PAO without starch with vegetables*	mashed carrot	6,20	0,996
25	Fried products (to be reheated)	codfish accras	6,76	0,978
26	Cream or cooked egg product based sauces	hollandaise sauce	5,13	0,991
27	Cream or (raw) egg product based sauces	mayonnaise mustard sauce	3,70	0,997
28	Pasteurized cooked and uncooked pressed cheese	mozzarella	6,11	0,987
29	Pasteurised soft cheese, bloomy rind and washed rind	camembert	6,63	0,978
30	Pasteurised blue-veined cheese	blue-veined cheese (Fourme d'Ambert)	6,87	0,966
31	Raw milk soft cheese, bloomy rind and washed rind	raw milk camembert	6,63	0,978
32	Raw milk blue-veined cheese	blue cheese (Roquefort …)	5,61	0,935
33	Fresh cheese	fresh cheese with Guerande salt	4,75	0,992
34	Fermented milk products	cottage cheese	4,60	0,991
35	Dairy desserts	vanilla cream	6,78	0,994
36	Fresh fruit salads and desserts	watermelon	5,60	0,987
37	Cooked fruit salads and desserts	cooked apple	3,39	0,987
38	Dried fruits and vegetables	dried apricots	4,30	0,750
39	Dried nuts and smoked seeds	almond slices	7,10	0,770
40	Pickled and vinegar-cured vegetables	pitted olives	5,20	0,970
41	Room temperature stable baked goods	coconut cake	6,20	0,860
42	Baked pastries with positive cold storage	morello cherry clafoutis	4,76	0,970
43	Unbaked pastries with fruit	raspberry bavarian cake	5,67	0,977
44	Uncooked pastries without fruit	chou chantilly pastry	6,55	0,987
45	Cocoa- chocolate and confectionery	milk chocolate chips	6,30	0,387
46	Fatty products	butter	6,40	0,904

* to be reheated ** PAO: Product of Animal Origin

VI. STORAGE RISK EVALUATION

Sym'Previus is a complete tool for microbiological data prediction. Recognized by the scientific community, it helps manufacturers to achieve food safety and quality.

Using the pH and Aw values collected per family, simulations will be based on worst case scenarios (most critical product). The use of predictive microbiology (Sym'Previus) allows a clear definition of growth / risk / no growth interface depending on reasonably foreseeable storage conditions.

The selected storage temperatures the most relevant are 5, 10, 15, 20, $25^{\circ}C$ (41, 50, 59, 68, $77^{\circ}F$) and the storage time 4, 6, 10, 14, 18 and 24 hours. The temperature assumed in planes is $22^{\circ}C$ (71,6°F), and for this case a temperature of $25^{\circ}C$ (77°F) was chosen to be in extra security conditions. The Time Zero corresponds to the logistic start point.

To make an easier reading, the table below show the location of each family products according to the range of pH and Aw of the most critical product of the family (target product).

Families					рН			
Aw	<3.5	3.5 - < <mark>3.9</mark>	3.9 - < <mark>4.2</mark>	4.2 - <4.6	4.6 - < <mark>5.0</mark>	5.0 - <5.4	5.4 - < <mark>6.0</mark>	>6.0 (7.0)
<0.88				38				39, 41, 45
>0.88-0.90								
>0.90-0.92							15	46
>0.92-0.94							32	
>0.94-0.96								4
>0.96 (0,99)	37	27		3	33, 34, 42, 9	8, 14, 17, 26, 40	19, 36, 43	1, 2, 5, 6, 7, 10, 11, 12, 13, 16, 18, 20, 21, 22, 23, 24, 25, 28, 29, 30, 31, 35, 44

VI.1. GROWTH SIMULATION ACCORDING TO THE STORAGE TIME

Methodology

The growth simulations are carried out on Sym'Previus' tool for 4 microorganisms (*Listeria monocytogenes*, *Staphylococcus aureus*, *Bacillus cereus*, and *Clostridium perfringens*).

Salmonella spp. and *E. coli* have been excluded because with a target limit "absence in 25g", no simulation will be applied considering the acceptable value doesn't include quantitative approach. Exclusion of risk ingredients or food preparation practice is the effective risk management measure.

The simulations are carried out and the results obtained are expressed according to the following methodology:

- The simulations are carried out during a storage time of 24 hours. For each table of results, only the storage temperatures are modified (5°C, 10°C, 15°C, 20°C and 25°C respectively / 41, 50, 59, 68, and 77°F respectively)

- The simulations are obtained with variable pH and Aw conditions defined by value intervals; the simulations are carried out with the highest bounds of each pH and Aw interval (noted in blue in the results tables)

- The results retained are the highest values indicated by the growth simulations (upper bounds of the 90% confidence band), which positions the results in the highest risk cases

- The observed values are represented by the following colour code: green for simulations for which no growth is observed, orange for growths that do not reach the previously defined risk level (1 log for *Listeria monocytogenes* and 2 log for *Staphylococcus aureus, Bacillus cereus* and *Clostridium perfringens*). For "red" results, the boxes indicate the length of time observed to reach the defined risk level.

VI.1.1. LISTERIA MONOCYTOGENES

Rules o	f judgment
	No growth during 24H
	Growth <1 log for <i>Listeria monocytogenes</i> and <2 log for <i>Staphylococcus aureus, Bacillus cereus</i> and <i>Clostridium perfringens</i> – during 24H
	Growth >1 log for <i>Listeria monocytogenes</i> and >2 log for <i>Staphylococcus aureus, Bacillus cereus</i> and <i>Clostridium perfringens</i> – during 24H, with the time observed to reach the defined risk level

	рН							
Aw	3.5	3.5-< <mark>3.9</mark>	3.9-< 4.2	4.2-< 4.6	4.6-< <mark>5</mark>	5-< <mark>5.4</mark>	5.4-< <mark>6</mark>	>6 <mark>(7)</mark>
<0.88								
>0.88-0.90								
>0.9- 0.92								
>0.92- 0.94								
>0.94- 0.96								
>0.96 (0.99)								

Simulation for *Listeria monocytogenes* : growth at 5°C (41°F)

Simulation for Listeria monocytogenes : growth at 10°C (50°F)

	рН									
Aw	3.5	3.5-< <mark>3.9</mark>	3.9-< <mark>4.2</mark>	4.2-< 4.6	4.6-< <mark>5</mark>	5-< <mark>5.4</mark>	5.4-< <mark>6</mark>	>6 <mark>(7)</mark>		
<0.88										
>0.88- <mark>0.90</mark>										
>0.9- <mark>0.92</mark>										
>0.92- 0.9 4										
>0.94- 0.96										
>0.96 (0.99)								14H		

Silliker SAS - Mérieux NutriSciences, 25 Boulevard de la Paix – CS 38512 95891 CERGY-PONTOISE cedex, FRANCE Tel. 0820 56 20 30* - Fax 01 34 41 13 11 www.mérieuxnutrisciences.com Simplified Limited Liability company with a share capital of €19,674,500 - 303 434 Registry of Trade and Companies *Service €0.12 / min + call charges

Simulation for Listeria monocytogenes : growth at 15°C (59°F)

		рН									
Aw	3.5	3.5-< <mark>3.9</mark>	3.9-< 4.2	4.2-< 4.6	4.6-< <mark>5</mark>	5-< <mark>5.4</mark>	5.4-< <mark>6</mark>	>6 <mark>(7)</mark>			
<0.88											
>0.88-0.90											
>0.9- 0.92											
>0.92- 0.9 4											
>0.94- 0.96						21H	16H	13H			
>0.96 (0.99)					17H	11H	9H	7Н			

Simulation for Listeria monocytogenes : growth at 20°C (68°F)

	рН									
Aw	3.5	3.5-< <mark>3.9</mark>	3.9-< 4.2	4.2-< 4.6	4.6-<5	5-< <mark>5.4</mark>	5.4-< <mark>6</mark>	>6 <mark>(7)</mark>		
<0.88										
>0.88- 0.90										
>0.9- <mark>0.92</mark>										
>0.92- 0.9 4							20H	17H		
>0.94- 0.96					17 H	13H	9Н	8H		
>0.96 (0.99)				20H	10H	7Н	6H	5H		

Simulation for Listeria monocytogenes : growth at 25°C (77°F)

		рН									
Aw	3.5	3.5-< <mark>3.9</mark>	3.9-< 4.2	4.2-< 4.6	4.6-< <mark>5</mark>	5-< <mark>5.4</mark>	5.4-< <mark>6</mark>	>6 <mark>(7)</mark>			
<0.88											
>0.88- 0.90											
>0.9- <mark>0.92</mark>											
>0.92- 0.94						18 H	13H	12H			
>0.94- 0.96				19H	11H	8H	7Н	6Н			
>0.96 (0.99)				11H	7Н	5H	4H	ЗН			

VI.1.2. STAPHYLOCOCCUS AUREUS

Rules o	fjudgment
	No growth during 24H
	Growth <1 log for <i>Listeria monocytogenes</i> and <2 log for <i>Staphylococcus aureus, Bacillus cereus</i> and <i>Clostridium perfringens</i> – during 24H
	Growth >1 log for <i>Listeria monocytogenes</i> and >2 log for <i>Staphylococcus</i> <i>aureus, Bacillus cereus</i> and <i>Clostridium perfringens</i> – during 24H, with the time observed to reach the defined risk level

	рН										
Aw	3.5	3.5-<3.9	3.9-< <mark>4.2</mark>	4.2-<4.6	4.6-< <mark>5</mark>	5-<5.4	5.4-<6	>6 (7)			
<0.88											
>0.88- <mark>0.90</mark>											
>0.9- <mark>0.92</mark>											
>0.92- <mark>0.94</mark>											
>0.94- <mark>0.96</mark>											
>0.96 (0.99)											

Simulation for *Staphylococcus aureus* : growth at 5°C (41°F)

Simulation for Staphylococcus aureus : growth at 10°C (50°F)

	рН										
Aw	3.5	3.5-<3.9	3.9-< <mark>4.2</mark>	4.2-<4.6	4.6-< <mark>5</mark>	5-<5.4	5.4-<6	>6 (7)			
<0.88											
>0.88- <mark>0.90</mark>											
>0.9- <mark>0.92</mark>											
>0.92- <mark>0.94</mark>											
>0.94- <mark>0.96</mark>											
>0.96 <mark>(0.99)</mark>											

Simulation for *Staphylococcus aureus* : growth at 15°C (59°F)

	рН										
Aw	3.5	3.5-< 3.9	3.9-< <mark>4.2</mark>	4.2-<4.6	4.6-< <mark>5</mark>	5-<5.4	5.4-<6	>6 <mark>(7)</mark>			
<0.88											
>0.88- <mark>0.90</mark>											
>0.9- <mark>0.92</mark>											
>0.92- <mark>0.94</mark>											
>0.94- <mark>0.96</mark>								23H			
>0.96 <mark>(0.99)</mark>							23H	19H			

Simulation for Staphylococcus aureus : growth at 20°C (68°F)

	рН										
Aw	3.5	3.5-< 3.9	3.9-< <mark>4.2</mark>	4.2-<4.6	4.6-< <mark>5</mark>	5-<5.4	5.4-<6	>6 <mark>(7)</mark>			
<0.88											
>0.88- <mark>0.90</mark>											
>0.9- <mark>0.92</mark>								21H			
>0.92- <mark>0.94</mark>							18H	15H			
>0.94 <mark>-0.96</mark>						19H	14H	12H			
>0.96 <mark>(0.99)</mark>					23H	16H	12H	10H			

Simulation for Staphylococcus aureus : growth at 25°C (77°F)

	рН										
Aw	3.5	3.5-< <mark>3.9</mark>	3.9-< <mark>4.2</mark>	4.2-<4.6	4.6-<5	5-<5.4	5.4-<6	>6 <mark>(7)</mark>			
<0.88											
>0.88- <mark>0.90</mark>		6						20H			
>0.9- <mark>0.92</mark>						21H	15H	12H			
>0.92- <mark>0.94</mark>					21H	15H	11H	9Н			
>0.94- <mark>0.96</mark>					17H	12H	11H	7H			
•0.96 <mark>(0.99)</mark>					14H	12H	7H	6H			

VI.1.3. CLOSTRIDIUM PERFRINGENS

Rules o	fjudgment
	No growth during 24H
	Growth <1 log for <i>Listeria monocytogenes</i> and <2 log for <i>Staphylococcus aureus, Bacillus cereus</i> and <i>Clostridium perfringens</i> – during 24H
	Growth >1 log for <i>Listeria monocytogenes</i> and >2 log for <i>Staphylococcus aureus, Bacillus cereus</i> and <i>Clostridium perfringens</i> – during 24H, with the time observed to reach the defined risk level

Simulation for *Clostridium perfringens* : growth at 5°C (41°F)

	рН										
Aw	3.5	3.5-<3.9	3.9-< <mark>4.2</mark>	4.2-<4.6	4.6-<5	5-<5.4	5.4-<6	>6 (7)			
<0.88											
>0.88- <mark>0.90</mark>											
>0.9- <mark>0.92</mark>					x						
>0.92- <mark>0.94</mark>											
>0.94- <mark>0.96</mark>											
>0.96 <mark>(0.99)</mark>											

Simulation for Clostridium perfringens : growth at 10°C (50°F)

	рН										
Aw	3.5	3.5-<3.9	3.9-<4.2	4.2-<4.6	4.6-< <mark>5</mark>	5-<5.4	5.4-<6	>6 (7)			
<0.88											
>0.88- <mark>0.90</mark>											
>0.9- <mark>0.92</mark>											
>0.92- <mark>0.94</mark>											
>0.94- <mark>0.96</mark>											
>0.96 (0.99)											

	рН										
Aw	3.5	3.5-< 3.9	3.9-< <mark>4.2</mark>	4.2-<4.6	4.6-< <mark>5</mark>	5-<5.4	5.4-<6	>6 <mark>(7)</mark>			
<0.88											
>0.88- <mark>0.90</mark>											
>0.9- <mark>0.92</mark>											
>0.92- <mark>0.94</mark>											
>0.94- <mark>0.96</mark>											
>0.96 (0.99)											

Simulation for *Clostridium perfringens* : growth at 15°C (59°F)

Simulation for Clostridium perfringens : growth at 20°C (68°F)

	рН										
Aw	3.5	3.5-< 3.9	3.9-< <mark>4.2</mark>	4.2-<4.6	4.6-< <mark>5</mark>	5-<5.4	5.4-<6	>6 <mark>(7)</mark>			
<0.88											
>0.88- <mark>0.90</mark>											
>0.9- <mark>0.92</mark>											
>0.92- <mark>0.94</mark>											
>0.94- <mark>0.96</mark>								21H			
>0.96 <mark>(0.99)</mark>							24H	13H			

Simulation for Clostridium perfringens : growth at 25°C (77°F)

	рН										
Aw	3.5	3.5-<3.9	3.9-< <mark>4.2</mark>	4.2-< <mark>4.6</mark>	4.6-< <mark>5</mark>	5-<5.4	5.4-<6	>6 (7)			
<0.88											
>0.88- <mark>0.90</mark>											
>0.9- <mark>0.92</mark>											
>0.92- <mark>0.94</mark>											
>0.94- <mark>0.96</mark>							16H	9H			
>0.96 <mark>(0.99)</mark>							10H	6H			

VI.1.4. BACILLUS CEREUS

The germs selected for the growth simulation are Group III *Bacillus cereus*, which are the cytotoxic germs with the best growth characteristics among all the *Bacillus cereus* proposed by the Sym'Previus software.

Rules o	f judgment
	No growth during 24H
	Growth <1 log for <i>Listeria monocytogenes</i> and <2 log for <i>Staphylococcus aureus, Bacillus cereus</i> and <i>Clostridium perfringens</i> – during 24H
	Growth >1 log for <i>Listeria monocytogenes</i> and >2 log for <i>Staphylococcus aureus, Bacillus cereus</i> and <i>Clostridium perfringens</i> – during 24H, with the time observed to reach the defined risk level

Simulation for *Bacillus cereus* : growth at 5°C (41°F)

	рН										
Aw	3.5	3.5-< <mark>3.9</mark>	3.9-< <mark>4.2</mark>	4.2-< <mark>4.6</mark>	4.6-<5	5-<5.4	5.4-<6	>6 <mark>(7)</mark>			
<0.88											
>0.88- <mark>0.90</mark>											
>0.9- <mark>0.92</mark>											
>0.92- <mark>0.94</mark>											
>0.94- <mark>0.96</mark>											
>0.96 (0.99)							3				

Simulation for *Bacillus cereus* : growth at 10°C (50°F)

	рН										
Aw	3.5	3.5-< <mark>3.9</mark>	3.9-< <mark>4.2</mark>	4.2-< <mark>4.6</mark>	4.6-<5	5-<5.4	5.4-< <mark>6</mark>	>6 <mark>(7)</mark>			
<0.88											
>0.88- <mark>0.90</mark>											
>0.9- <mark>0.92</mark>											
>0.92- <mark>0.94</mark>											
>0.94- <mark>0.96</mark>											
•0.96 (0.99)											

Simulation for Bacillus cereus : growth at 15°C (59°F)

	рН										
Aw	3.5	3.5-< 3.9	3.9-< <mark>4.2</mark>	4.2-< <mark>4.6</mark>	4.6-< <mark>5</mark>	5-<5.4	5.4-< <mark>6</mark>	>6 <mark>(7)</mark>			
<0.88											
>0.88- <mark>0.90</mark>											
>0.9- <mark>0.92</mark>											
>0.92- <mark>0.94</mark>											
>0.94 <mark>-0.96</mark>											
>0.96 <mark>(0.99)</mark>						24H	16H	15H			

Simulation for *Bacillus cereus* ; growth at 20°C (68°F)

	рН										
Aw	3.5	3.5-< 3.9	3.9-< <mark>4.2</mark>	4.2-<4.6	4.6-< <mark>5</mark>	5-<5.4	5.4-<6	>6 (7)			
<0.88											
>0.88- <mark>0.90</mark>											
>0.9- <mark>0.92</mark>											
>0.92- <mark>0.94</mark>											
>0.94- <mark>0.96</mark>						22H	14H	12H			
>0.96 <mark>(0.99)</mark>					18H	10H	8H	7H			

Simulation for *Bacillus cereus* : growth at 25°C (77°F)

	рН										
Aw	3.5	3.5-<3.9	3.9-< <mark>4.2</mark>	4.2-<4.6	4.6-< <mark>5</mark>	5-<5.4	5.4-<6	>6 <mark>(7)</mark>			
<0.88											
>0.88- <mark>0.90</mark>											
>0.9- <mark>0.92</mark>											
>0.92- <mark>0.94</mark>											
>0.94- <mark>0.96</mark>						12H	8H	7H			
>0.96 (0.99)					10H	6H	4H	4H			

VI.2. GROWTH SIMULATION ACCORDING TO THE STORAGE TEMPERATURE

Methodology

The methodology is the same as in Chapter VI.I, but in this case the results are obtained at a given temperature (with a maximum temperature of 25°C / 77°F) and the storage times vary (4H, 6H, 10H, 14H, 18H and 24H respectively). In these tables, growth simulation results that are zero or below the defined risk level are shown in yellow. The red boxes always represent growth simulation results exceeding the previously defined risk levels, the temperature indicated in these red boxes, indicate the minimum temperature for which this risk level is exceeded.

Rules o	f judgment
	Growth ≤ 1 log for <i>Listeria monocytogenes</i> and ≤ 2 log for <i>Staphylococcus</i>
	aureus, Bacillus cereus and Clostridium perfringens at this temperature for a
	maximum of 25°C / 77°F
	Growth >1 log for Listeria monocytogenes and >2 log for Staphylococcus
	aureus, Bacillus cereus and Clostridium perfringens – at 25°C / 77°F, with the
	minimal T°C to reach the defined risk level

A conversion table from Celsius to Fahrenheit degrees is available in the appendix VIII.2

VI.2.1. LISTERIA MONOCYTOGENES

рΗ 3.5 3.5-<<mark>3.9</mark> 3.9-<<mark>4.2</mark> 4.2-<4.6 4.6-<5 5-<<mark>5.4</mark> 5.4-<<mark>6</mark> >6 (7) Aw <<mark>0.88</mark> >0.88-<mark>0.90</mark> >0.9-<mark>0.92</mark> >0.92-<mark>0.94</mark> >0.94-<mark>0.96</mark> >0.96 (0.99)

Simulation for Listeria monocytogenes during storage 4 H

Simulation for Listeria monocytogenes during storage 6 H

	рН									
Aw	3.5	3.5-< <mark>3.9</mark>	3.9-< <mark>4.2</mark>	4.2-< <mark>4.6</mark>	4.6-< <mark>5</mark>	5-< <mark>5.4</mark>	5.4-< <mark>6</mark>	>6 <mark>(7)</mark>		
<0.88										
>0.88- 0.90										
>0.9- 0.92										
>0.92- 0.9 4										
>0.94- 0.96								25°C		
>0.96 (0.99)						25°C	20°C	20°C		

Simulation for Listeria monocytogenes during storage 10 H

		рН									
Aw	3.5	3.5-< <mark>3.9</mark>	3.9-< 4.2	4.2-< 4.6	4.6-< 5	5-< <mark>5.4</mark>	5.4-< <mark>6</mark>	>6 <mark>(7)</mark>			
<0.88											
>0.88- 0.90											
>0.9- 0.92											
>0.92- 0.9 4											
>0.94- 0.96						25°C	20°C	20°C			
>0.96 (0.99)					20°C	20°C	15°C	15°C			

	рН									
Aw	3.5	3.5-< <mark>3.9</mark>	3.9-< <mark>4.2</mark>	4.2-< 4.6	4.6-< <mark>5</mark>	5-< <mark>5.4</mark>	5.4-< <mark>6</mark>	>6 (7)		
<0.88										
>0.88-0.90										
>0.9- <mark>0.92</mark>										
>0.92- 0.94							25°C	25°C		
>0.94- 0.96					25°C	20°C	20°C	15°C		
>0.96 (0.99)				25°C	20°C	15°C	15°C	10°C		

Simulation for Listeria monocytogenes during storage 14 H

Simulation for Listeria monocytogenes during storage 18 H

	рН									
Aw	3.5	3.5-< <mark>3.9</mark>	3.9-< 4.2	4.2-< 4.6	4.6-< <mark>5</mark>	5-< <mark>5.4</mark>	5.4-< <mark>6</mark>	>6 <mark>(7)</mark>		
<0.88										
>0.88- 0.90										
>0.9- <mark>0.92</mark>										
>0.92- <mark>0.94</mark>						25°C	25°C	20°C		
>0.94- 0.96					20°C	20°C	15°C	15°C		
>0.96 (0.99)				25°C	15°C	15°C	15°C	10°C		

Simulation for Listeria monocytogenes during storage 24 H

	рН									
Aw	3.5	3.5-< <mark>3.9</mark>	3.9-< 4.2	4.2-< 4.6	4.6-<5	5-< <mark>5.4</mark>	5.4-< <mark>6</mark>	>6 <mark>(7)</mark>		
<0.88										
>0.88- 0.90										
>0.9- <mark>0.92</mark>										
>0.92- 0.94						25°C	20°C	20°C		
>0.94- 0.96				25°C	20°C	15°C	15°C	15°C		
>0.96 (0.99)				20°C	15°C	15°C	15°C	10°C		

VI.2.2. STAPHYLOCOCCUS AUREUS

рΗ 3.5 3.5-<<mark>3.9</mark> 3.9-<<mark>4.2</mark> 4.2-<<mark>4.6</mark> 4.6-<5 5-<<mark>5.4</mark> 5.4-<<mark>6</mark> >6 <mark>(7)</mark> Aw <<mark>0.88</mark> >0.88-<mark>0.90</mark> >0.9-<mark>0.92</mark> >0.92-<mark>0.94</mark> >0.94-<mark>0.96</mark> >0.96 <mark>(0.99)</mark>

Simulation for Staphylococcus aureus during storage 4 H

Simulation for Staphylococcus aureus during storage 6 H

	рН									
Aw	3.5	3.5-< <mark>3.9</mark>	3.9-< 4.2	4.2-< <mark>4.6</mark>	4.6-< <mark>5</mark>	5-< <mark>5.4</mark>	5.4-< <mark>6</mark>	>6 <mark>(7)</mark>		
<0.88										
>0.88- 0.90										
>0.9- <mark>0.92</mark>										
>0.92- 0.9 4										
>0.94- 0.96										
>0.96 (0.99)								25°C		

Simulation for Staphylococcus aureus during storage 10 H

	рН									
Aw	3.5	3.5-< <mark>3.9</mark>	3.9-< 4.2	4.2-< <mark>4.6</mark>	4.6-< <mark>5</mark>	5-< <mark>5.4</mark>	5.4-< <mark>6</mark>	>6 <mark>(7)</mark>		
< 0.88										
>0.88- 0.90										
>0.9- <mark>0.92</mark>										
>0.92- 0.9 4										
>0.94- 0.96								25°C		
>0.96 (0.99)							25°C	20°C		

	рН									
Aw	3.5	3.5-< <mark>3.9</mark>	3.9-< 4.2	4.2-< <mark>4.6</mark>	4.6-< <mark>5</mark>	5-< <mark>5.4</mark>	5.4-< <mark>6</mark>	>6 <mark>(7)</mark>		
< 0.88										
>0.88-0.90										
>0.9- <mark>0.92</mark>								25°C		
>0.92- <mark>0.94</mark>							25°C	25°C		
>0.94- 0.96						25°C	20°C	20°C		
>0.96 (0.99)					25°C	25°C	20°C	20°C		

Simulation for *Staphylococcus aureus* during storage 14 H

Simulation for *Staphylococcus aureus* during storage 18 H

	рН									
Aw	3.5	3.5-< <mark>3.9</mark>	3.9-< 4.2	4.2-< 4.6	4.6-<5	5-< <mark>5.4</mark>	5.4-< <mark>6</mark>	>6 <mark>(7)</mark>		
<0.88										
>0.88- 0.90										
>0.9- 0.92							25°C	25°C		
>0.92- 0.94						25°C	20°C	20°C		
>0.94- 0.96					25°C	25°C	20°C	20°C		
>0.96 (0.99)					25°C	20°C	20°C	20°C		

Simulation for Staphylococcus aureus during storage 24 H

	рН										
Aw	3.5	3.5-< <mark>3.9</mark>	3.9-< 4.2	4.2-< <mark>4.6</mark>	4.6-< <mark>5</mark>	5-< <mark>5.4</mark>	5.4-< <mark>6</mark>	>6 <mark>(7)</mark>			
< 0.88											
>0.88- 0.90								25°C			
>0.9- <mark>0.92</mark>						25°C	25°C	20°C			
>0.92- <mark>0.94</mark>					25°C	25°C	20°C	20°C			
>0.94- <mark>0.96</mark>					25°C	25°C	20°C	15°C			
>0.96 (0.99)					20°C	20°C	15°C	15°C			

VI.2.3. CLOSTRIDIUM PERFRINGENS

рΗ 3.5 3.5-<<mark>3.9</mark> 3.9-<<mark>4.2</mark> 4.2-<<mark>4.6</mark> 4.6-<5 5-<<mark>5.4</mark> 5.4-<<mark>6</mark> >6 <mark>(7)</mark> Aw <<mark>0.88</mark> >0.88-<mark>0.90</mark> >0.9-<mark>0.92</mark> >0.92-<mark>0.94</mark> >0.94-<mark>0.96</mark> >0.96 <mark>(0.99)</mark>

Simulation for Clostridium perfringens during storage 4 H

Simulation for Clostridium perfringens during storage 6 H

	рН									
Aw	3.5	3.5-< <mark>3.9</mark>	3.9-< <mark>4.2</mark>	4.2-< <mark>4.6</mark>	4.6-< <mark>5</mark>	5-< <mark>5.4</mark>	5.4-< <mark>6</mark>	>6 <mark>(7)</mark>		
< 0.88										
>0.88- 0.90										
>0.9- <mark>0.92</mark>										
>0.92- <mark>0.94</mark>										
>0.94- 0.96										
>0.96 (0.99)								25°C		

Simulation for Clostridium perfringens during storage 10 H

	рН									
Aw	3.5	3.5-< <mark>3.9</mark>	3.9-< 4.2	4.2-< <mark>4.6</mark>	4.6-< <mark>5</mark>	5-< <mark>5.4</mark>	5.4-< <mark>6</mark>	>6 (7)		
<0.88										
>0.88- 0.90										
>0.9- 0.92										
>0.92- 0.9 4										
>0.94- 0.96								25°C		
>0.96 (0.99)							25°C	25°C		

	рН									
Aw	3.5	3.5-< <mark>3.9</mark>	3.9-< <mark>4.2</mark>	4.2-< 4.6	4.6-<5	5-< <mark>5.4</mark>	5.4-< <mark>6</mark>	>6 <mark>(7)</mark>		
< 0.88										
>0.88-0.90										
>0.9- <mark>0.92</mark>										
>0.92- <mark>0.94</mark>										
>0.94- 0.96								25°C		
>0.96 (0.99)							25°C	20°C		

Simulation for *Clostridium perfringens* during storage 14 H

Simulation for Clostridium perfringens during storage 18 H

	рН									
Aw	3.5	3.5-< <mark>3.9</mark>	3.9-< 4.2	4.2-< <mark>4.6</mark>	4.6-< <mark>5</mark>	5-< 5.4	5.4-< <mark>6</mark>	>6 <mark>(7)</mark>		
<0.88										
>0.88- 0.90										
>0.9- <mark>0.92</mark>										
>0.92- 0.9 4										
>0.94- 0.96							25°C	25°C		
>0.96 (0.99)							25°C	20°C		

Simulation for Clostridium perfringens during storage 24 H

		рН							
Aw	3.5	3.5-< <mark>3.9</mark>	3.9-< <mark>4.2</mark>	4.2-< <mark>4.6</mark>	4.6-< <mark>5</mark>	5-< <mark>5.4</mark>	5.4-< <mark>6</mark>	>6 <mark>(7)</mark>	
< 0.88									
>0.88-0.90									
>0.9- <mark>0.92</mark>									
>0.92- <mark>0.94</mark>									
>0.94- 0.96							25°C	20°C	
>0.96 (0.99)							20°C	20°C	

Simulation for Bacillus cereus during storage 4 H

		рН								
Aw	3.5	3.5-< <mark>3.9</mark>	3.9-< <mark>4.2</mark>	4.2-< <mark>4.6</mark>	4.6-< <mark>5</mark>	5-< <mark>5.4</mark>	5.4-< <mark>6</mark>	>6 <mark>(7)</mark>		
< 0.88										
>0.88- <mark>0.90</mark>										
>0.9- <mark>0.92</mark>										
>0.92- <mark>0.94</mark>										
>0.94- 0.96										
>0.96 (0.99)							25°C	25°C		

Simulation for *Bacillus cereus* during storage 6 H

		рН								
Aw	3.5 3.5-< 3.9 3.9-< 4.2 4.2-< 4.6 4.6-< 5				5-< <mark>5.4</mark>	5.4-< <mark>6</mark>	>6 <mark>(7)</mark>			
< 0.88										
>0.88- 0.90										
>0.9- <mark>0.92</mark>										
>0.92- <mark>0.94</mark>										
>0.94- 0.96										
>0.96 (0.99)						25°C	25°C	25°C		

Simulation for Bacillus cereus during storage 10 H

		рН								
Aw	3.5 3.5-<3.9 3.9-<4.2 4.2-<4.6 4.6-<5					5-< <mark>5.4</mark>	5.4-< <mark>6</mark>	>6 <mark>(7)</mark>		
<0.88										
>0.88-0.90										
>0.9- <mark>0.92</mark>										
>0.92- <mark>0.94</mark>										
>0.94- 0.96							25°C	25°C		
>0.96 (0.99)						20°C	20°C	20°C		

Simulation for Bacillus cereus during storage 14 H

		рН							
Aw	3.5	3.5-< <mark>3.9</mark>	4.2-< 4.6	4.6-< <mark>5</mark>	5-< <mark>5.4</mark>	5.4-< <mark>6</mark>	>6 <mark>(7)</mark>		
<0.88									
>0.88-0.90									
>0.9- <mark>0.92</mark>									
>0.92- 0.9 4									
>0.94- 0.96						25°C	20°C	20°C	
>0.96 (0.99)					25°C	20°C	20°C	20°C	

Simulation for Bacillus cereus during storage 18 H

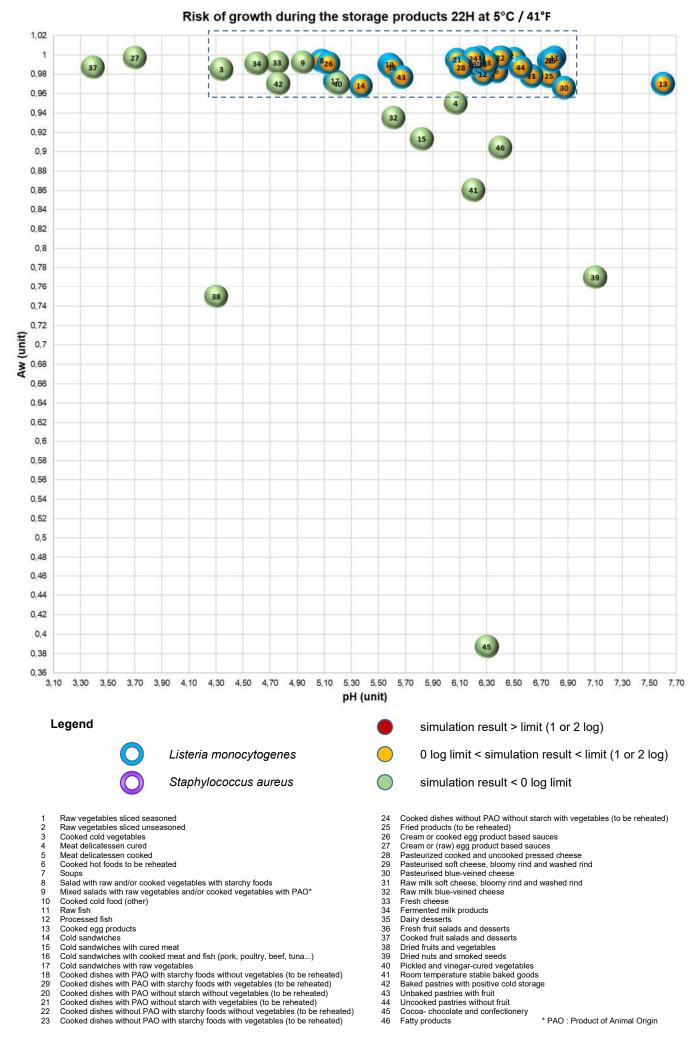
		рН								
Aw	3.5	3.5-< <mark>3.9</mark>	3.9-< 4.2	4.2-< <mark>4.6</mark>	4.6-<5	5-< <mark>5.4</mark>	5.4-< <mark>6</mark>	>6 <mark>(7)</mark>		
< 0.88										
>0.88- <mark>0.90</mark>										
>0.9- <mark>0.92</mark>										
>0.92- <mark>0.94</mark>										
>0.94- <mark>0.96</mark>						25°C	20°C	20°C		
>0.96 (0.99)					20°C	20°C	15°C	15°C		

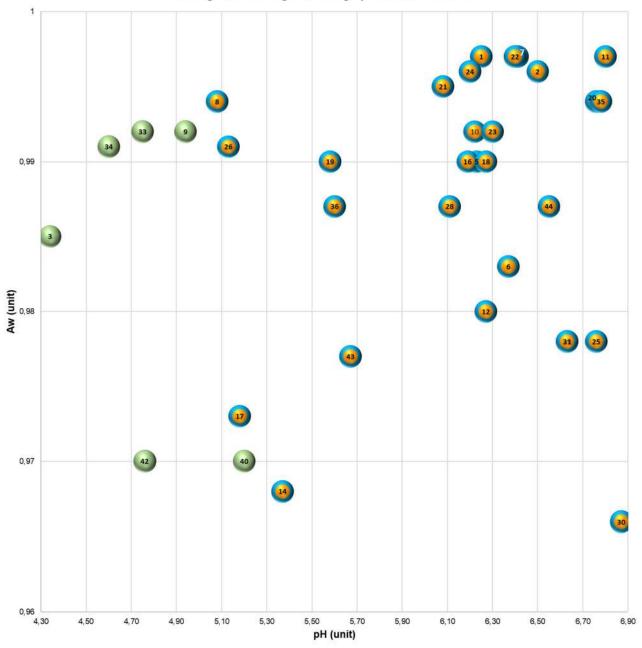
Simulation for Bacillus cereus during storage 24 H

		рН								
Aw	3.5	3.5-< <mark>3.9</mark>	3.9-< <mark>4.2</mark>	4.2-< <mark>4.6</mark>	4.6-< <mark>5</mark>	5-< <mark>5.4</mark>	5.4-< <mark>6</mark>	>6 <mark>(7)</mark>		
<0.88										
>0.88- 0.90										
>0.9- <mark>0.92</mark>										
>0.92- 0.9 4										
>0.94- 0.96						20°C	20°C	20°C		
>0.96 (0.99)					20°C	15°C	15°C	15°C		

VII. RESULTS PER PRODUCTS FAMILY

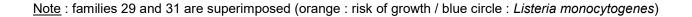
A summary is presented based on the most critical combinations of pH scale (from below 3,0 to 8,0), Aw scale (from 0,36 to 1) and most critical microorganisms identified. If required, a selected area is zoomed.

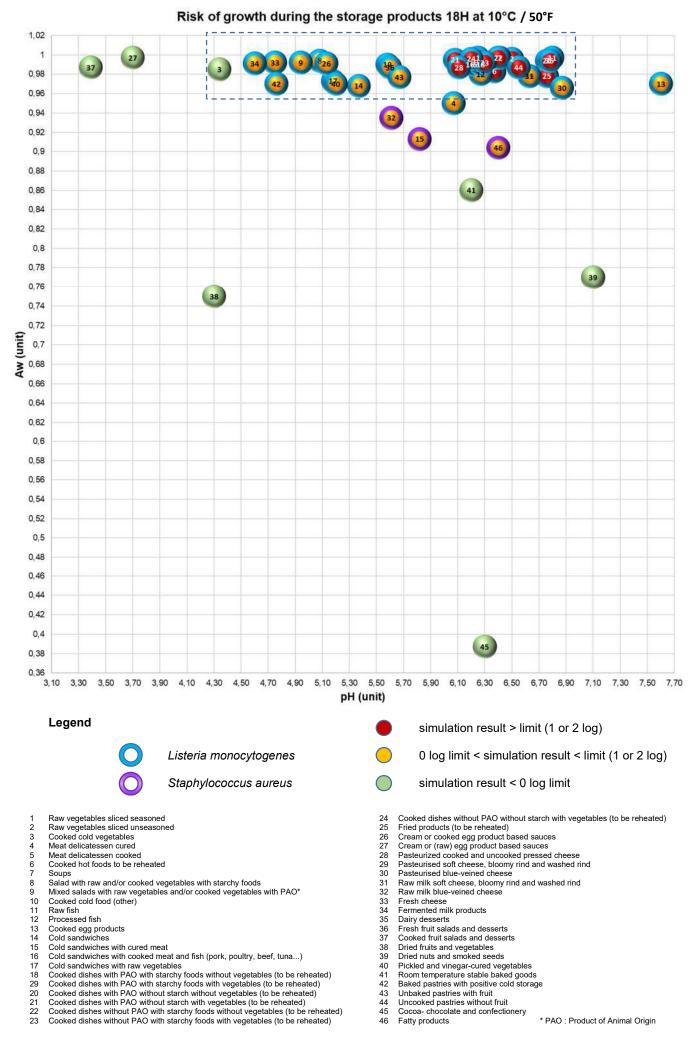

Synthetic presentation includes 4 scenarios of time/temperature with product families (results linked to source data) and the most sensitive microorganisms for each time-temperature combination. The 4 targeted time/temperature scenarios are the following:

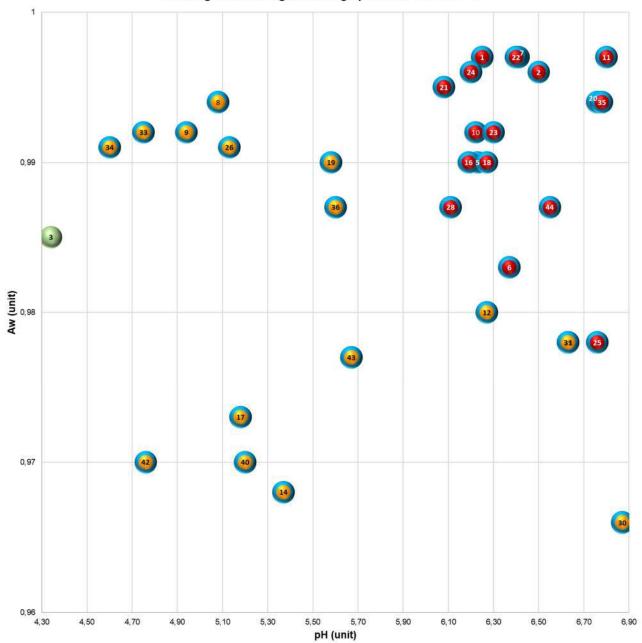

- 22H at 5°C (41°F) - 18H at 10°C (50°F)
- 10H at 15°C (59°F)
- 14H at 25°C (77°F)

As in the previous section, the predictive microbiology study is focussed on *Listeria monocytogenes, Staphylococcus aureus, Bacillus cereus* and *Clostridium perfringens. Salmonella* spp. and *E. coli* are excluded as previously explained.

Exclusion of risk ingredients or food preparation practice is the effective risk management measure.

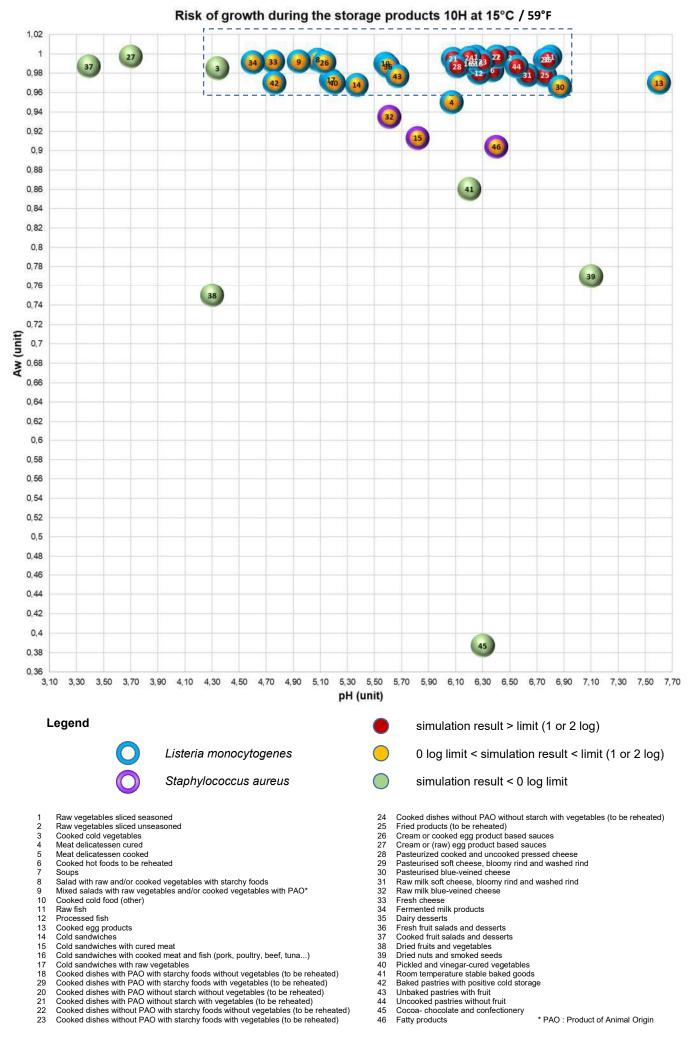

A conversion table from Celsius to Fahrenheit degrees is available in the appendix VIII.2

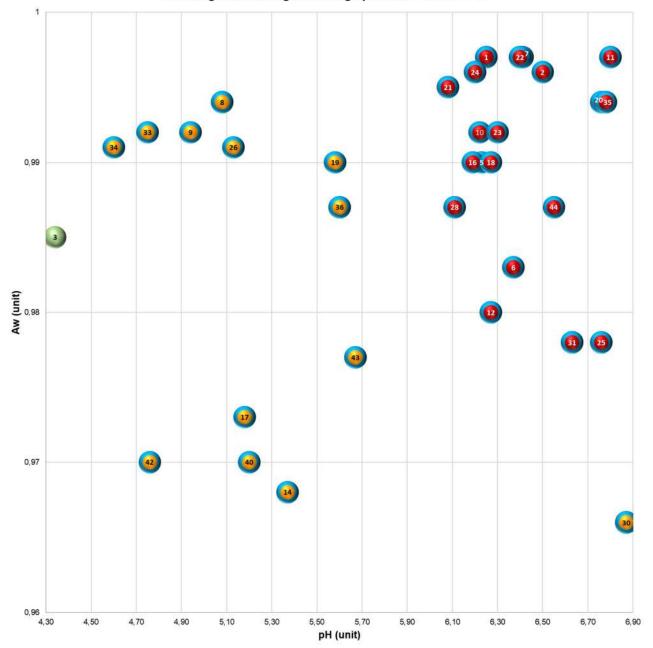




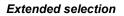
Risk of growth during the storage products 22H at 5°C / 41°F

Extended selection

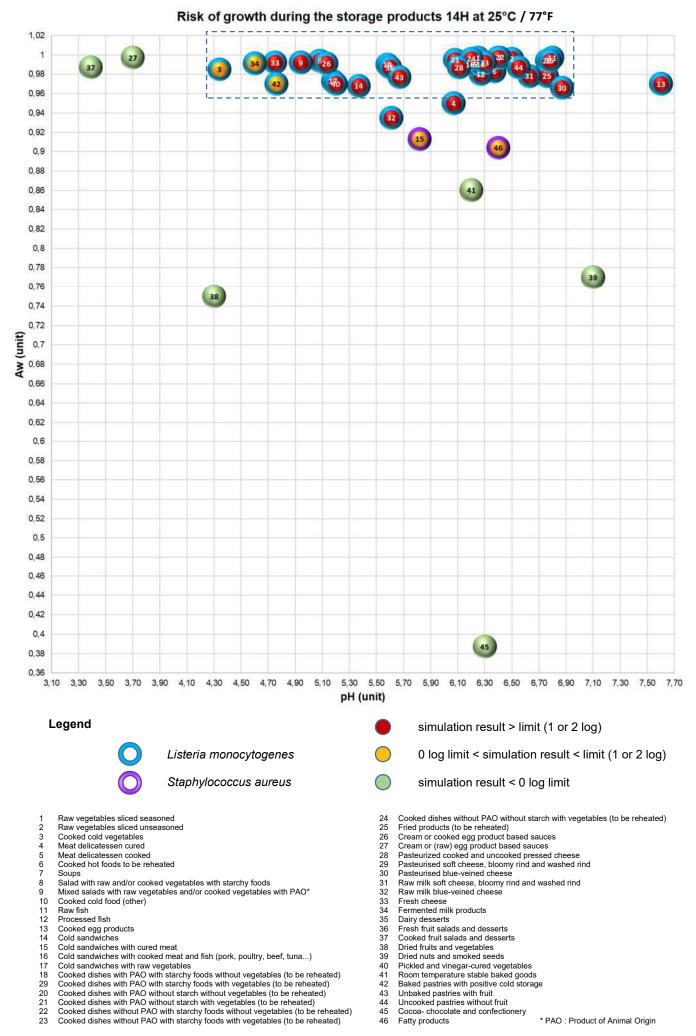


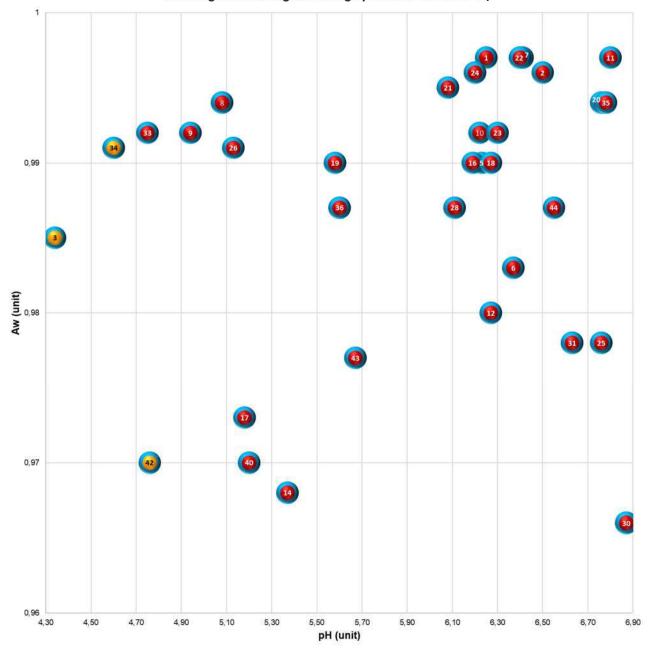

Risk of growth during the storage products 18H at 10°C / 50°F

Extended selection

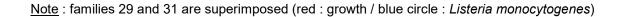

Note : families 29 and 31 are superimposed (orange : risk of growth / blue circle : Listeria monocytogenes)







Risk of growth during the storage products 10H at 15°C / 59°F



Risk of growth during the storage products 14H at 25°C / 77°F

Extended selection

VIII. APPENDIX

VIII.1. DETAILLED PRODUCT CATEGORIES

Some food items need specific low temperature to keep their organoleptic characteristics and their specific texture, for example ice-cream. Ice creams are a category of dessert and have the specificity to be very challenging for temperature.

If a temperature deviation goes above $0^{\circ}C / 32^{\circ}F$ (ex. $5^{\circ}C / 41^{\circ}F$ in our study), the texture of the Ice cream will be unacceptable for consumption.

	Family	Example of products	Products	Aw	рН	Reference
			Celery remoulade	0.992	4.68	MXNS
			Vegetables aïoli	0.997	6.25	MXNS
	Dow vogstables aliged	Celery remoulade,	Coleslaw with cabbage and	0.988	4.16	MXNS
1	Raw vegetables sliced seasoned	coleslaw, grated	apple			
	seasoned	carrots, gazpacho	Grated raw carrots and celery	0.988	5.18	MXNS
			parsley			
			Carrot and celery	0.990	4.42	MXNS
			Fresh vegetables	0.97-0,997	-	CRFSFS, 2003
			Asparagus (buds and stalks)	-	5.7-6.1	CRFSFS , 2003
			Avocado	0.996	5.54	MXNS
			Beans (string and lima)	-	4.6-6.5	CRFSFS, 2003
			Beets (sugar)	-	4.2-4.4	CRFSFS, 2003
			Broccoli	_	6.5	CRFSFS, 2003
			Brussels Sprouts		6.3	CRFSFS, 2003
			Cabbage (green)		5.4-6.0	CRFSFS, 2003
			Carrots	_	4.9-5.2 ; 6.0	CRFSFS, 2003
			Cauliflower		5.6	CRFSFS, 2003
			Celery		5.7-6.0	CRFSFS, 2003
2	Raw vegetables sliced	Green salad, carrots,	Corn (sweet)		7.3	CRFSFS, 2003
12	unseasoned	radishes	Cucumber		4.5 and 5.1 - 5.7 / 3.8	ACA / CRFSFS, 2003
			Eggplant		4.4 / 4.5	ACA / CRFSFS, 2003
			Lettuce	-	6.0	CRFSFS, 2003
			Onions (red)	-	5.3-5.8	CRFSFS, 2003
			Parsley	-	5.7-6.0	CRFSFS, 2003 CRFSFS, 2003
			Parsnip	-	5.3	CRFSFS, 2003 CRFSFS, 2003
			Rhubarb	-	3.1-3.4	CRFSFS, 2003 CRFSFS, 2003
			Spinach	-	5.5-6.0	CRFSFS, 2003 CRFSFS, 2003
			Turnips	-	5.2-5.5	-
						CRFSFS, 2003
			Tomatoes (small) Tomatoes	0.966-0.974	3.89-4.09 3.8 and 4.2 - 4.9	MXNS ACA
			Tomatoes	-	5.0 anu 4.2 - 4.9	ACA
		Beets cubes, leeks			4	10010
3	Cooked cold	with salad dressing,	Roasted peppers	0.982 -0.985	4.22 -4.34	MXNS
	vegetables	cooked vegetables with	Beets (seasoned)	-	4.30	MXNS
		mayonnaise				
			Rosette	0.85	-	ACA
			Serrano ham	0.898-0.916	5.65-5.74	MXNS
			Aosta ham	0.91	-	ACA
	Meat delicatessen	Raw ham, sausage,	Bresaola	0.94	-	ACA
4	cured	chorizo	Grisons meat	0.92	-	ACA
			Cured meat	0.87 -0.95	-	CRFSFS, 2003
			Сорра	0.896-0.934	5.91 -6.07	MXNS
			Dry sausage	0.882	5.24	MXNS
			Speck ham	0.902	5.75	MXNS
1			Pastrami	0.97	-	ACA
			Pudding (meat)	0.97 -0.99	-	CRFSFS, 2003
1			Ham	-	5.9-6.1	CRFSFS, 2003
1		Cooked ham, pâté,	Cooked ham	0.972-0.983	6.00 -6.23	MXNS
5	Meat delicatessen	rillettes, blood	Cooked sliced chicken ham	0.976	6.12	MXNS
5	cooked	sausage, andouilles,	Cooked salted pork belly	0.93-0.96	5.60-5.80	MXNS
1		poultry ham, pudding	Rillette pork	0.965-0.982	5.45-6.21	MXNS
1			Saveloy salad	0.973-0.979	4.56-5.80	MXNS
1			Pâté with baked pastry	0.976-0.977	6.06-6.20	MXNS
1			Pâté	0.975	5.84	MXNS

			Quiche "lorraine" (eggs, smoked bacon, cream)	0.983	6.37	MXNS
			Burger (beef)	0.972	5.66	MXNS
		Puff pastry, hot dogs,	Cheeseburger	0.974	5.39	MXNS
			Hot Dog	0.967	5.39	MXNS
		4 cheeses, mushroom,	Ciabatta chicken Piquillos	0.973	5.86	MXNS
6	Cooked hot food to	mushroom &	Hot dog (beef)	0.971	5.70	MXNS
0	be reheated	cheese), quiche,	Muffin (eggs. bacon. cheddar)	0.962	5.70	MXNS
		samosa, falafel, hot	Pizza chicken cheese	0.973	5.70	MXNS
		sandwiches, paninis,	Hot sandwich (smoked bacon,	0.978	5.72	MXNS
		"cordon bleu"	cheese, onions, potatoes)	0.010	0.12	11,7410
		cordon bled		0.974	5.68	MXNS
			Hot sandwich (ciabatta, ham,	0.974	5.00	IVIANS
			Emmental cheese)			
			Pizza ham, cheese, mushroom	0.971	5.28	MXNS
			Vegetables soup	0.991 -0.997	5.59 -6.41	MXNS
		Vegetable soup with or	Bean soup with noodles	0.989	6.0	Da Silva et al.1993
7	Soups	without cream, Asian				
	·	soup	Sweet potato soup	0.986	6.37	MXNS
		coup	Asparagus soup	0.994	6.29	MXNS
			Piemontaise salad	0.99	4.41-4.43	MXNS
	Salad with raw and/or	Tabbouleh. Potatoes	Pasta salad	0.987	4.92	MXNS
8	cooked vegetables	salad, pasta salad	Rice salad	0.995	4.61	MXNS
	with starchy foods					
-	-	On autoral 111	Napoli pasta salad	0.994	5.08	MXNS
		Snout salad, trio of				
	Mixed salads with raw	J ()				
-	vegetables and/or	cabbage), fisherman's	Rice vegetables surimi salad	0.992	4.94	MXNS
9	cooked vegetables	salad (tuna), Caesar	Pasta and tuna salad	0.989	4.49	MXNS
	with AO	salad, potato tuna		5.000	1.10	
<u> </u>		salad				
			Chicken tomato basil cake	0.97	-	ACA
			Emmental cake	0.96	-	ACA
			Chicken curry spread	-	3.0	ACA
			Hummus	0.982-0.991	4.27-4.36	MXNS
		Savory cakes,	Tapenade with olive and tomato	0.968-0.974	4.12-4.23	MXNS
	Cooked cold food	hummus, eggplant	Pesto sauce			
10	Cooked cold food	caviar, tapenade, pesto		0.947	4.18	MXNS
	(other)	sauce, cooked tuna,	Pesto tomato sauce	0.952	4.48	MXNS
		foie gras, fish terrine	Cooked yellowfin tuna	0.985-0.993	5.79-5.92	MXNS
		iole gras, lisit territe	Minced roasted chicken	0.986 -0.992	6.13 -6.22	MXNS
			Foie gras	0.96-0.974	6.09-6.16	MXNS
			Salmon cake	0.97-0.98	7.44-7.80	MXNS
			Fish terrine with mayonnaise	0.988	5.92	MXNS
-				0.99- 0.997	6.6 -6.8	
			Fresh fish	0.99-0.997		CRFSFS, 2003
			Tuna Fish	-	5.2-6.1	CRFSFS, 2003
11	Raw fish	Sushi, fish tartar…	Salmon	-	6.1-6.3	CRFSFS, 2003
			White fish	-	5.5	CRFSFS, 2003
			Sushi	0.967	4.87	MXNS
			Cold smoked salmon	0.962-0.980	5.94-6.17	Augustin et al. 2015
12	Processed fish	Cold smoked salmon,	Sprats	0.967	6.27	MXNS
12	FIOCESSEU IISII	sprats			·	
			Smoked fish	0.95-0.97	5.7-6.0	MXNS
		Plain omelet with	Eggs	0.97	_	CRFSFS, 2003
			Eggs yolks	0.51	-	
13	Cooked egg products	mushrooms, ham	Eggs white	-	6.0-6.3	CRFSFS, 2003
		scrambled eggs, boiled	Hard-boiled egg (without	-	7.6- 9.5	CRFSFS, 2003
		eggs	shell)	0.97	7.07	MXNS
-			,			
14	Cold sandwiches	Cheese sandwich	Cheese sandwich	0.968	5.37	MXNS
	Cold sandwiches with	Wholemeal Italian				
15			with Serrano ham	0.913	5.82	MXNS
	cured meat	ham				
	Cold sandwiches with	Wholemeal sandwich				
		(with ham, cooked	Minced chicken sandwich	0.99	6.19	MXNS
16	cooked meat and fish	beef, pulled beef,	Eggs tuna sandwich	0.982	5.57	MXNS
	(pork, poultry, beef,	chicken, turkey ham,	Wrap chicken curry	0.979	5.73	MXNS
	tuna)			0.010	5.75	
-	Oshi sa titu ini	tuna), rosette, pâté				
17	Cold sandwiches with	Vegan sandwich…	Ciabatta veggie	0.973	5.18	MXNS
	raw vegetables	- 34. 64. 41. 61.				
			Penne gratin with two salmons	0.99	5.64	MXNS
			Penne gratin with bacon	0.98	5.09	MXNS
			Lentil sausage	0.99	5.54	MXNS
	Cooked dishes with	Hach Darmontian field				
		Hash Parmentier, fish	Carbonara pasta (tagliatelle)	0.99	5.53	MXNS
	PAO with starchy		Hash Parmentier	0.990	6.23	MXNS
18	,	brandade, penne				
18	foods without	brandade, penne gratin, lentil sausage,	Gyoza chicken	0.989	5.69-6.05	MXNS
18	foods without vegetables (to be			0.989 0.983-0.987	5.69-6.05 5.85- 6.27	MXNS MXNS
18	foods without	gratin, lentil sausage,	Gyoza chicken Gyoza shrimp	0.983-0.987	5.85 -6.27	MXNS
18	foods without vegetables (to be	gratin, lentil sausage,	Gyoza chicken Gyoza shrimp Nikuman	0.983-0.987 0.979	5.85 -6.27 5.80	MXNS MXNS
18	foods without vegetables (to be	gratin, lentil sausage,	Gyoza chicken Gyoza shrimp	0.983-0.987	5.85 -6.27	MXNS

		1				
	Cooked dishes with	l	Chicken mushroom risotto	0.98	5.25	MXNS
	PAO with starchy	Lasagna, paella,	Shrimp and coconut milk risotto	0.98	5.29	MXNS
19	foods with vegetables	chicken mushroom	Paëlla	0.984-0.986	5.96-6.44	MXNS
		risotto				
	(to be reheated)		Bolognaise pasta	0.977 -0.99	5.03 -5.58	MXNS
			Cooked chicken	0.987-0.990	6.03-6.31	MXNS
		Roast chicken	Breaded fish	0.990-0.994	6.66- 6.76	MXNS
		(portion), poultry	Cooked hake fish	0.994	6.63	MXNS
		supreme, cooked		0.987	6.44	
		chicken, beef sauté,	Cooked saithe fillet with butter			MXNS
		sliced cooked roast	Cooked minced beef steak	0.989-0.994	5.68-6.39	MXNS
	Cooked dishes with	(beef, veal, pork),	Roasted beef (slices)	0.992	5.73	MXNS
20	PAO without starch	paupiette, duck breast,	Slice of roasted bacon	0.925-0.935	6.00-6.29	MXNS
20	without vegetables (to	minced steak, beef	Pulled beef	0.987-0.994	5.75-5.87	MXNS
	be reheated)	· · · · · · · · · · · · · · · · · · ·	Roasted chicken	0.993	6.56	MXNS
	,	meatball, veal	Cooked turkey	0.990	5.93	MXNS
		normandin, hake fillet	Yakitori	0.972	6.66	MXNS
		with lemon sauce,	Cooked shrimp	0.976-0.978	7.30-7.51	MXNS
		cooked Neapolitan fish	Beef tongue with Madeira sauce	0.995	5.96	MXNS
		steak			6.69	MXNS
			Roasted guinea fowl	0.988	0.09	IVIAINS
	Cooked dishes with		Moussaka	0.98-0.981	5.18-5.62	MXNS
21	PAO without starch	Moussaka, veal	Veal blanguette	0.995	6.08	MXNS
	with vegetables (to be	blanquette	Pork with vegetables	0.987	6.03	MXNS
	reheated)		TOR WIT Vegetables	0.307	0.05	WIXING
	Cooked dishes	Mashed potatoes,	Detete es nomesto:	0.000.0.007	F 40 F 00	10/010
	without PAO with	cooked pasta, cooked	Potatoes pancake	0.983-0.987	5.49-5.63	MXNS
22	starchy foods without	rice, cooked semolina,	Cooked rice	0.994 -0.997	6.08 -6.40	MXNS
~	vegetables (to be	bulgur pancakes,	Cooked potatoes	0.993	5.69	MXNS
	reheated)		Mashed potatoes	0.989	5.8	Mahakarnchanakul et al. 1999
		noodles				
	Cooked dishes			0.000		1000
	without PAO with	Mushroom risotto.	Vegetables gratin	0.992	6.30	MXNS
23	starchy foods with	asian products	Gyoza with vegetables	0.986	5.94	MXNS
	vegetables (to be		Cauliflower and potato gratin	0.993	6.24	MXNS
	reheated)					
	Cooked dishes	Mashed zucchini,	Cooked eggplant	-	4.5-5.3	ACA
	Cooked dishes	mashed pea, pan-fried	Ratatouille	0.983-0.990	3.91-3.99	MXNS
	without PAO without	vegetables, ratatouille,	Cooked green beans	0.995	5.71	MXNS
24	starch with	baked beans, tomato	Mashed zucchini	0.996	5.99	MXNS
	vegetables (to be	and pepper sauce,	Mashed carrot	0,996	6.20	MXNS
	reheated)	tofu, wok vegetables	Cooked carrot	0.987	5.87	MXNS
				0.907	5.87	IVIANS
05	Fried products (to be	Fried potatoes, egg	Fried onions	0.348-0.371	5.37-5.74	MXNS
25	reheated)	rolls, tempura, shrimp	Codfish accras	0.975- 0.978	6.76	MXNS
	*	fritters				
	- · ·	Béchamel sauce, curry				1000
26	Cream or cooked egg	sauce, béarnaise	Béarnaise sauce	0.977-0.979	4.10-4.34	MXNS
20	product based sauces	sauce, hollandaise	Hollandaise sauce	0.991	5.13	ADRIA Normandie, FR
		sauce				
			Light mayonnaise	0.972-0.978	3.41-3.58	MXNS
	Cream or (raw) egg	Mayonnaise, Caesar	Mayonnaise mustard sauce	0.997	3.7	Weagant et al. 1994
27	product based sauces		Mayonnaise	0,947	-	Gómez et al. 1992
	r. 5440, 54004 544065		Caesar dressing	0.986	4.66	MXNS
<u> </u>			Jura Cheese		4.00	ACA
				0.96	-	
			Mimolette	0.96	-	ACA
			Gouda cumin	0.97	-	ACA
			Edam	0.96	-	ACA
			Gouda	0.96	-	ACA
			Port Salut	0.96	-	ACA
			Tomme de brebis	0.96	-	ACA
	Pasteurized cooked	Comté, Mimolette,	Emmental (slices)	0.970-0.982	5.48-5.61	MXNS
28	and uncooked	Gouda, Parmesan,	Comté	0.955	5.77	MXNS
	pressed cheese	Mozzarella, Cheddar	Beaufort	0.94	-	ACA
	F. 5555 & 0110000		Parmesan copeaux	0.93	_	ACA
			Parmesan cheese	0.93	-	CRFSFS, 2003
				0.00-0.70	4050	
			Cheese (American mild and cheddar)	-	4.9-5.9	CRFSFS, 2003
			Raclette cheese	0.954-0.970	5.44-6.03	MXNS
			Cantal (slices)	0.951-0.960	4.88-5.03	MXNS
			Mozzarella (beads)	0.898-0,997	5.52-5.62	MXNS
			Mozarella	0.987- 0,997	6.03 -6.11	MXNS
	Pasteurized soft		Camembert	0.971 -0.978	6.30 -6.63	MXNS
29	cheese, bloomy rind	Camembert, Brie	St-Maure-de-Tourraine (goat cheese)	0.972-0.985	4.96-5.12	MXNS
	and washed rind		Brie (slices)	0.970-0.982	5.66-6.24	MXNS
00	Pasteurized blue-		Fourme d'Ambert	0.942	6.86	MXNS
30	veined cheese	Fourme d'Ambert	Blue-veined Cheese	0.942-0.966	6.47 -6.87	MXNS

			Natural cheeses	0.95-0,997	-	CRFSFS, 2003
	Raw milk soft cheese,	Raw milk Camembert.	Camembert	0.971 -0.978	6.30 -6.63	MXNS
31	bloomy rind and	natural cheeses	St-Nectaire	0.976	6.29	MXNS
	washed rind	natural cheeses	Goat cheese with raw milk	0.966	5.46	MXNS
			Brie de Meaux	0.968-0.976	6.01-6.38	MXNS
	Raw milk blue-veined		Blue cheese	0.935	5.61	MXNS
32		Roquefort				
-	cheese	•	Roquefort	0.926	5.84	MXNS
			Cheese with nuts		4.4	ACA
<u></u>		Encel above	Cantadou	-		
33	Fresh cheese	Fresh cheese	Fresh Cheese with Guerande	-	4.3	ACA
			salt	0.992	4.75	MXNS
			Yoghurt		3.8-4.2	CRFSFS, 2003
			rognun	-		ACA
~ •	Fermented milk	Yoghurt, Cottage	0.4	-	5.1 and 4-4.5	
34	products	cheese	Cottage cheese	0.991	4.4 and 4- 4.6	ACA
	F ·		lemon "Perle de lait" (Yoplait)	-	4.3	ACA
			Actimel	-	4.3	ACA
		Description	Bircher	0.976-0.984	5.29-5.39	MXNS
		Dessert cream	Vanilla cream	0.994	6.77- 6.78	MXNS
35	Dairy desserts	(chestnut, vanilla),	Cream muslin	0.938	6.20	MXNS
00		ice-cream, smoothies	Butter cream	0.839	5.18	MXNS
		(with milk/yoghurt)			6.50-6.67	
			Ice cream	0.957-0.965		Gougouli et al. 2008
			Citrus fruit salad	-	3.6	ACA
			Grapefruit segments	-	2.9	ACA
			Grape juice	-	3.0	CRFSFS, 2003
			Orange segments	-	3.5	ACA
			Apples	_	3.9 / 3.3 - 3.9	ACA / CRFSFS, 2003
			Orange	_	3.5 and 3.1 - 4.1	ACA
			Kiwi		2.9 and 3.1 - 3.9	ACA
		Cut-up fruits, fruits	Banana	-	4.4 and 4.5 - 5.2	ACA
		salad, fresh fruits		-		
		(melon, watermelon,	Figs	-	4.6	CRFSFS, 2003
36	Fresh fruit salads and	orange, apple, banana,	Plums	-	2.8-4.6	CRFSFS, 2003
00	desserts	grapes), fresh fruit	Grapes	-	3.4-4.5	CRFSFS, 2003
		juice, smoothies	Melon	0.989	6.19	Salazar et al. 2017
			Honeydew melon	-	6.3-6.7	CRFSFS, 2003
		(fruits/vegetables)	Watermelon	0.987	5.2 -5.6	CRFSFS, 2003
			Pumpkin	-	4.8-5.2	CRFSFS, 2003
			Squash		5.0-5.4	CRFSFS, 2003
			Cut fruits	0.987	4.14	MXNS
					4.14	
			Fruit juice concentrates	0.79-0.84	-	CRFSFS, 2003
			Limes	-	1.8-2.0	CRFSFS, 2003
			Smoothies (with fruits)	0.986-0.988	3.45-3.59	Moura et al. 2017
			4-fruit salad (in syrup)	-	3.6	ACA
			Diced pineapple (in syrup)	-	4.4	ACA
		Cooked fruits,	Mini canned pear	-	3.6 and 3.9-4.2	ACA
37	Cooked fruit salads	compote, redcurrant	Caramel apple compote	_	4.4	ACA
01	and desserts		Exotic fruit compote	-	3.6	ACA
		jelly pears		-		
			Stewed red fruits	-	3.4	ACA
			Cooked apple	0.987	3.39	MXNS
			Dried fruit	0.55-0.80	-	CRFSFS, 2003
			Dried grape sultana	0.575-0.634	4.05-4.19	MXNS
38	Dried fruits and	Dried fruit	Dried figs	0.484-0.695	4.20-4.33	MXNS
აშ	vegetables	Dried fruit	Dried tomatoes	-	<4.2	ACA
	Ŭ		Dried apricots	0.717-0.732	4.08-4.14	MXNS
			Dried apricots	0.75	4.3	FSA
		1	Almond slices	0.75	7.1	FSA
<u>~</u>	Dried nuts and	Descute mit-			1.1	
39	smoked seeds	Peanuts, nuts	Peanuts, dry roasted	0.147	-	Schmidt et Fontana, 2007
			Sunflower seeds	0.75	-	Schmidt et Fontana, 2007
			Pickles (canned)	-	5.1 and 3.2 - 3.5	ACA
	Disking and strange		Olives (canned)	-	4.0 and 3.6 - 3.8	ACA / CRFSFS, 2003
40	Pickled and vinegar-	Pickles, olives	Pitted black olives with herbs	0.87	5.20	MXNS
	cured vegetables		Pitted green olives	0.97	3.62	MXNS
			Olives stuffed with almonds	0.97	4.09	MXNS
					4.05	·
			Candied fruit cake	0.77	-	ACA
			Baked cake	0.90-0.94	-	CRFSFS, 2003
		Dry cakes, baked cake,	Fruit cake	0.73-0.83	-	CRFSFS, 2003
41	Room temperature	candied fruit cake,	Carrot cake (with icing cream	0.828	6.38	MXNS
/17	stable baked goods	king's cake (galette	cheese)	-		
41	Level Sauge Angel		Christmas cake	0.69	4.4	FSA
41		I des rois)		0.03	7.7	100
41		des rois)	-			ECV
41		des rois)	Sultana and currant cake	0.80 0.86	4.7 6.2	FSA Mattick et al. 2001

42	Baked pastries with positive cold storage	Flan, chocolate pie, apple pie, jellies, pastry with apple	Jellies Morello cherry clafoutis Apple pie Blueberry pie Pears chocolate pie Foret Noire cake (chocolate cream and candied cherry) Charlotte with raspberry Plain pancakes Pancake	0.82-0.94 0.97 0.968-0.988 0.970 0.946 0.943 0.973 0.99 0.95	4.63 -4.76 4.28-4.63 4.21 5.32 4.16 4.24	CRFSFS, 2003 MXNS MXNS MXNS MXNS MXNS MXNS ACA ACA
43	Unbaked pastries with fruit	Bavarian cake	Raspberry bavarian cake Pastry with buttercream and strawberry	0.977 0.932-0.976	5.67 4.97-5.53	MXNS MXNS
44	Uncooked pastries without fruit	Chocolate eclair, entremets…	Chocolate foam Chou Chantilly pastry Paris Brest pastry Pastry with buttercream Mille-feuille pastry Chocolate ganache	0.968-0.972 0.987 0.968 0.822 0.963-0.910 0.926	5.84-6.31 6.55 6.53 5.87 5.74-5.98 5.26	MXNS MXNS MXNS MXNS MXNS MXNS
45	Cocoa- chocolate and confectionery	Chocolate, sweetened red bean paste, milk chocolate bar	Milk chocolate chips	0.387	6.3	MXNS
46	Fatty products	Butter, margarine	Butter Margarine	0,904 0,914	6,1-6,4 -	Gómez et al. 1992 and CRFSFS

Conversion from Celsius degree to Fahrenheit degree: temperature F = (temperature C x 1,8) + 32

Conversion from Fahrenheit degree to Celsius degree: *temperature C = (temperature F – 32) / 1,8*

T (°C)	T (°F)	T (°C)	T (°F)	T (°C)	T (°F)	T (°C)	T (°F)	T (°C)	T (°F)
-40,0	-40,0	0,0	32,0	40,0	104,0	80,0	176,0	120,0	248,0
-39,0	-38,2	1,0	33,8	41,0	105,8	81,0	177,8	121,0	249,8
-38,0	-36,4	2,0	35,6	42,0	107,6	82,0	179,6	122,0	251,6
-37,0	-34,6	3,0	37,4	43,0	109,4	83,0	181,4	123,0	253,4
-36,0	-32,8	4,0	39,2	44,0	111,2	84,0	183,2	124,0	255,2
-35,0	-31,0	5,0	41,0	45,0	113,0	85 <i>,</i> 0	185,0	125,0	257,0
-34,0	-29,2	6,0	42,8	46,0	114,8	86,0	186,8	126,0	258,8
-33,0	-27,4	7,0	44,6	47,0	116,6	87,0	188,6	127,0	260,6
-32,0	-25,6	8,0	46,4	48,0	118,4	88,0	190,4	128,0	262,4
-31,0	-23,8	9,0	48,2	49,0	120,2	89,0	192,2	129,0	264,2
-30,0	-22,0	10,0	50,0	50,0	122,0	90,0	194,0	130,0	266,0
-29,0	-20,2	11,0	51,8	51,0	123,8	91,0	195,8	131,0	267,8
-28,0	-18,4	12,0	53,6	52,0	125,6	92,0	197,6	132,0	269,6
-27,0	-16,6	13,0	55,4	53,0	127,4	93,0	199,4	133,0	271,4
-26,0	-14,8	14,0	57,2	54,0	129,2	94,0	201,2	134,0	273,2
-25,0	-13,0	15,0	59,0	55,0	131,0	95,0	203,0	135,0	275,0
-24,0	-11,2	16,0	60,8	56,0	132,8	96,0	204,8	136,0	276,8
-23,0	-9,4	17,0	62,6	57,0	134,6	97,0	206,6	137,0	278,6
-22,0	-7,6	18,0	64,4	58,0	136,4	98,0	208,4	138,0	280,4
-21,0	-5,8	19,0	66,2	59,0	138,2	99 <i>,</i> 0	210,2	139,0	282,2
-20,0	-4,0	20,0	68,0	60,0	140,0	100,0	212,0	140,0	284,0
-19,0	-2,2	21,0	69,8	61,0	141,8	101,0	213,8	141,0	285,8
-18,0	-0,4	22,0	71,6	62,0	143,6	102,0	215,6	142,0	287,6
-17,0	1,4	23,0	73,4	63,0	145,4	103,0	217,4	143,0	289,4
-16,0	3,2	24,0	75,2	64,0	147,2	104,0	219,2	144,0	291,2
-15,0	5,0	25,0	77,0	65,0	149,0	105,0	221,0	145,0	293,0
-14,0	6,8	26,0	78,8	66,0	150,8	106,0	222,8	146,0	294,8
-13,0	8,6	27,0	80,6	67,0	152,6	107,0	224,6	147,0	296,6
-12,0	10,4	28,0	82,4	68,0	154,4	108,0	226,4	148,0	298,4
-11,0	12,2	29,0	84,2	69,0	156,2	109,0	228,2	149,0	300,2
-10,0	14,0	30,0	86,0	70,0	158,0	110,0	230,0	150,0	302,0
-9,0	15,8	31,0	87,8	71,0	159,8	111,0	231,8	151,0	303,8
-8,0	17,6	32,0	89,6	72,0	161,6	112,0	233,6	152,0	305,6
-7,0	19,4	33,0	91,4	73,0	163,4	113,0	235,4	153,0	307,4
-6,0	21,2	34,0	93,2	74,0	165,2	114,0	237,2	154,0	309,2
-5,0	23,0	35,0	95,0	75,0	167,0	115,0	239,0	155,0	311,0
-4,0	24,8	36,0	96,8	76,0	168,8	116,0	240,8	156,0	312,8
-3,0	26,6	37,0	98,6	77,0	170,6	117,0	242,6	157,0	314,6
-2,0	28,4	38,0	100,4	78,0	172,4	118,0	244,4	158,0	316,4
-1,0	30,2	39,0	102,2	79,0	174,2	119,0	246,2	159,0	318,2

IX. BIBLIOGRAPHIC REFERENCES

50607-WHO-Food-Safety-publicationV4_Web.pdf - The burden of foodborne diseases in the WHO European region - https://www.euro.who.int/__data/assets/pdf_file/0005/402989/50607-WHO-Food-Safety-publicationV4_Web.pdf (11/05/2021).

AFSCA « Avis11-2019_SciCom2018-17_listerialaitcrubeurre_000.pdf ». https://www.favv-afsca.be/comitescientifique/avis/2019/_documents/Avis11-2019_SciCom2018-17_listerialaitcrubeurre_000.pdf (31/05/2021).

ALLERBERGER F. 2003. « *Listeria*: growth. phenotypic differentiation and molecular microbiology ». *FEMS Immunology & Medical Microbiology* 35(3): 183-89.

ANSES « BIORISK2016SA0081Fi.pdf ». https://www.anses.fr/fr/system/files/BIORISK2016SA0081Fi.pdf (11/05/2021).

ANSES. https://www.anses.fr/fr/system/files/MIC2011sa0117Fi.pdf (21/05/2021)

ANSES 2017. https://www.anses.fr/fr/system/files/BIORISK2016SA0073Fi.pdf (22/052021)

ANSES 2017. https://www.anses.fr/fr/system/files/MIC2011sa0057Fi.pdf (25/05/2021)

ANSES 2019. https://www.anses.fr/en/system/files/MIC2011sa0058FiEN.pdf (24/05/2021)

ANSES 2021. https://www.anses.fr/fr/system/files/BIORISK2016SA0075Fi.pdf (31/05/2021)

AUGUSTIN J-C., FERRIER R., HEZARD B., LINTZ A., STAHL V. 2015 - Comparison of individual-based modeling and population approaches for prediction of foodborne pathogens growth - Food Microbiology. 2015Feb. 45(Pt B):205-15.

BUCHANAN R. L., STAHL H. G. et WHITING R. C. 1989. « Effects and Interactions of Temperature. pH. Atmosphere. Sodium Chloride. and Sodium Nitrite on the Growth of *Listeria monocytogenes* ». *Journal of Food Protection* 52(12): 844–51.

CASTILLEJO-RODRÍGUEZ. A. M. et al. 2002. « Assessment of Mathematical Models for Predicting *Staphylococcus aureus* Growth in Cooked Meat Products ». *Journal of Food Protection* 65(4): 659-65.

CDC 2012. « Outbreak of Staphylococcal Food Poisoning from a Military Unit Lunch Party — United States. July 2012 ». https://www.cdc.gov/mmwr/preview/mmwrhtml/mm6250a2.htm (21/05/2021).

CDC 2016. « National Enteric Disease Surveillance: Shiga Toxin-Producing *Escherichia coli* (STEC) Annual Report. 2016 | *E. Coli* | CDC ». https://www.cdc.gov/ecoli/surv2016/index.html (31/05/2021).

CDC 2017. « Learn about the Symptoms of *Listeria* ». *Centers for Disease Control and Prevention*. https://www.cdc.gov/listeria/symptoms.html (27/05/2021).

CDC 2019. « Prevent *Listeria* ». *Centers for Disease Control and Prevention*. https://www.cdc.gov/listeria/prevention.html (12/05/2021).

CDC 2020. « Outbreak of *E. coli* Infections Linked to Leafy Greens | CDC ». https://www.cdc.gov/ecoli/2020/o157h7-10-20b/index.html (31/05/2021).

CEYLAN E., AMEZQUITA A., ANDERSON N. et al. 2021. Guidance on validation of lethal control measures for foodborne pathogens in foods. Compr Rev Food Sci Food Saf. 2021; 1–57. https://doi.org/10.1111/1541-4337.12746 CHAURET C., 2011. « Survival and Control of *Escherichia coli* O157:H7 in Foods. Beverages. Soil and Water ». *Virulence* 2(6): 593-601.

COLAS-MEDA P., VINAS I., ALEGRE I., ABADIAS M. 2017. « The Impact of a Cold Chain Break on the Survival of *Salmonella enterica* and *Listeria monocytogenes* on Minimally Processed 'Conference' Pears during Their Shelf Life ». *Journal of the Science of Food and Agriculture* 97(9): 3077–80.

COMMISSION REGULATION (EC) No 2073/2005 https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A32005R2073 (27/05/2021).

COMMISSION REGULATION (EU) No 209/2013 https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32013R0209&from=ES (25/05/2021).

CRFSFS, 2003 - Factors that influence microbial growth - Comprehensive Reviews in Food Science and Food Safety. Vol. 2 (Supplement): 21-32

D'AOUST J-Y. et al. 2007. « *Salmonella* ». In *Food Safety Handbook*. bioMérieux Education. bioMérieux édition. 128-41.

DA SILVA S.M., RABINOVITCH L. et ROBBS PG. 1993: Quantification and behavioural characterisation of *Bacillus cereus* in formulated infant foods. 1-Generation time. *Revista de Microbiologica* 24(2) 125 – 131.

DELBES C., ALOMAR J., CHOUGUI N., MARTIN J-F., MONTEL M-C. 2006. « *Staphylococcus aureus* Growth and Enterotoxin Production during the Manufacture of Uncooked. Semihard Cheese from Cows' Raw Milk ». *Journal of Food Protection* 69(9): 2161-67.

ECDC 2017. « Salmonellosis-annual-epidemiological-report-2017.pdf ». https://www.ecdc.europa.eu/sites/default/files/documents/salmonellosis-annual-epidemiological-report-2017.pdf (25/05/2021).

ECDC 2019. « Epidemiological Report-STEC-2019.pdf ». https://www.ecdc.europa.eu/sites/default/files/documents/AER-STEC-2019.pdf (24/05/2021).

ECDC 2019. « *Salmonella* the Most Common Cause of Foodborne Outbreaks in the European Union ». *European Centre for Disease Prevention and Control*. https://www.ecdc.europa.eu/en/news-events/salmonella-most-common-cause-foodborne-outbreaks-european-union (25/05/2021).

EFSA 2005. « Opinion of the Scientific Panel on Biological Hazards (BIOHAZ) on *Bacillus cereus* and Other *Bacillus* spp. in Foodstuffs ». *EFSA Journal* 3(4): 175.

EFSA 2012. « Technical Specifications on the Harmonised Monitoring and Reporting of Antimicrobial Resistance in Methicillin-Resistant *Staphylococcus aureus* in Food-Producing Animals and Food ». *EFSA Journal* 10(10): 2897.

EFSA 2013. « Scientific Opinion on the Risk Posed by Pathogens in Food of Non-Animal Origin. Part 1 (Outbreak Data Analysis and Risk Ranking of Food/Pathogen Combinations) ». *EFSA Journal* 11(1): 3025.

EFSA 2016. « Risks for Public Health Related to the Presence of *Bacillus Cereus* and Other *Bacillus* Spp. Including *Bacillus thuringiensis* in Foodstuffs ». *EFSA Journal* 14(7): e04524.

EFSA and ECDC 2019. European Food Safety Authority and European Centre for Disease Prevention and Control. « The European Union One Health 2018 Zoonoses Report ». *EFSA Journal* 17(12). https://data.europa.eu/doi/10.2903/j.efsa.2019.5926 (21/05/2021).

EFSA 2020. « Scientific Opinion. Guidance on date marking and related food information: part 1 (date marking) ». *EFSA Journal* 18(12):6306. <u>www.efsa.europa.eu/efsajournal</u>.

EL-GAZZAR F. E. et MARTH E. H., 1992. « Salmonellae. Salmonellosis. and Dairy Foods: A Review ». *Journal of Dairy Science* 75(9): 2327-43.

ERCOLI L. et al. 2017. « Investigation of a Staphylococcal Food Poisoning Outbreak from a Chantilly Cream Dessert. in Umbria (Italy) ». *Foodborne Pathogens and Disease* 14(7): 407-13.

EUR-Lex - 02005R2073-20140601 - EN - EUR-Lex. COMMISSION REGULATION (EC) No 2073/2005. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A02005R2073-20140601+ (21/05/2021).

EUR-Lex - 32005R2073 - EN - EUR-Lex. https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A32005R2073 (22/05/2021).

FAO / WHO « Guidelines | CODEXALIMENTARIUS FAO-WHO ». http://www.fao.org/fao-who-codexalimentarius/codex-texts/guidelines/en/ (11 mai 2021).

FDA 2020. Center for Food Safety and Applied. « Food Code 2001 ». *FDA*. https://www.fda.gov/food/fda-food-code/food-code-2001 (22/05/2021).

FDA. Fish and Fishery Products Hazards and Controls Guidance. https://www.fda.gov/media/80319/download (21/05/2021).

FSA. Food Standards Agency funded data generated at the former FMBRA. Chorleywood (today Champden and Chorleywood Food Research Association). UK

FINLAY W. J. J., LOGAN N. A., SUTHERLAND A. D. 2000. « *Bacillus cereus* Produces Most Emetic Toxin at Lower Temperatures ». *Letters in Applied Microbiology* 31(5): 385-89.

GIACCONE V., OTTAVIANI F. et al. 2007. « *Listeria monocytogenes* ». In *Food Safety Handbook*. bioMérieux Education. bioMérieux édition. 108-27.

GOMEZ R. et FERNANDEZ-SALGUERO J., 1992. "Water activity and chemical composition of some food emulsions". *Food Chemistry*, 45(2): 91-93.

GOUGOULI M., ANGELIDIS A. S., KOUTSOUMANIS K. 2008. « A study on the kinetic behavior of *Listeria monocytogenes* in ice cream stored under static and dynamic chilling and freezing conditions ». *J Dairy Sci.* 91(2): 523-30.

GRASS J. E., GOULD L. H., MAHON B. E. 2013. « Epidemiology of Foodborne Disease Outbreaks Caused by *Clostridium perfringens*. United States. 1998-2010 ». *Foodborne Pathogens and Disease* 10(2): 131-36.

HASSANIEN-FATEN S., HASSAN M.A., SHALTOUT S., ELRAIS-AMINA M., 2014. « *Clostridium perfringens* in vacuum packaged meat products ». *Benha Veterinary Medical Journal*, 26(1): 49-53.

HENNEKINNE J-A., DE BUYSER M-L. DRAGACCI S. 2012. « *Staphylococcus aureus* and its food poisoning toxins: characterization and outbreak investigation ». *FEMS Microbiology Reviews* 36(4): 815-36.

HUANG L., 2015. « Growth of *Staphylococcus aureus* in Cooked Potato and Potato Salad - A One-Step Kinetic Analysis ». *Journal of Food Science* 80(12): M2837-44.

HUANG L., LI C., HWANG C-A., 2018. « Growth/No Growth Boundary of *Clostridium perfringens* from Spores in Cooked Meat: A Logistic Analysis ». *International Journal of Food Microbiology* 266: 257-66.

HWANG C-A. et HUANG L., 2018. « Dynamic Analysis of Competitive Growth of *Escherichia coli* O157:H7 in Raw Ground Beef ». *Food Control* 93: 251-59.

ICMSF 1996. « *Listeria monocytogenes* ». In *Microbiological Specifications of Food Pathogens*. Microorganisms in foods. London. Weinheim. NY. Tokyo. Melbourne. Madras: Blackie academics & professional. 141–82. ICMSF 1996. « *Staphylococcus aureus* ». In *Microbiological Specifications of Food Pathogens*. Microorganisms in foods. London. Weinheim. NY. Tokyo. Melbourne. Madras: Blackie academics & professional. 299-233.

ICMSF 1996. « *Clostridium perfringens* ». In *Microbiological Specifications of Food Pathogens*. Microorganisms in foods. London. Weinheim. NY. Tokyo. Melbourne. Madras: Blackie academics & professional. 66-111.

ICMSF 1996. « *Bacillus cereus* ». In *Microbiological Specifications of Food Pathogens*. Micro-organisms in foods. London. Weinheim. NY. Tokyo. Melbourne. Madras: Blackie academics & professional. 66-111.

ICMSF 1996. « *Salmonella* ». In *Microbiological Specifications of Food Pathogens*. Micro-organisms in foods. London. Weinheim. NY. Tokyo. Melbourne. Madras: Blackie academics & professional. 217-64.

ICMSF 1996. « *E. coli* STEC ». In *Microbiological Specifications of Food Pathogens*. Micro-organisms in foods. London. Weinheim. NY. Tokyo. Melbourne. Madras: Blackie academics & professional. 126-40.

JAN McCLURE et al. 2007. « *Staphylococcus aureus* ». In *Food Safety Handbook*. bioMérieux Education. bioMérieux édition. 154-63.

JESSBERGER N., DIETRICH R., GRANUM P E., MARTLBAUER E., 2020. « The *Bacillus cereus* Food Infection as Multifactorial Process ». *Toxins* 12(11): 701.

JOHNSON E. A. 2009. « *Clostridia* ». In *Encyclopedia of Microbiology (Third Edition)*. éd. Moselio Schaechter. Oxford: Academic Press. 87-93. https://www.sciencedirect.com/science/article/pii/B9780123739445001395 (22 mai 2021).

JUNEJA V., HUANG L., THIPPAREDDI H. 2006. « Predictive Model for Growth of *Clostridium perfringens* in Cooked Cured Pork ». *International Journal of Food Microbiology* 110(1): 85-92.

KENNEDY J., BLAIR I. S., McDOWELL D. A., BOLTON D. J. 2005. « An Investigation of the Thermal Inactivation of *Staphylococcus aureus* and the Potential for Increased Thermotolerance as a Result of Chilled Storage ». *Journal of Applied Microbiology* 99(5): 1229-35.

KIM C. J., EMERY D. A., RINKE H., NAGARAJA K. V., HALVORSON D.A. 1989. « Effect of Time and Temperature on Growth of *Salmonella* Enteritidis in Experimentally Inoculated Eggs ». *Avian Diseases* 33(4): 735-42.

KIM Jinkyung et al. 2012. « Validating Thermal Inactivation of *Salmonella* spp. in Fresh and Aged Chicken Litter ». *Applied and Environmental Microbiology* 78(4): 1302-7.

KIM Young-Jo et al. 2018. « Development and Validation of Predictive Model for *Salmonella* Growth in Unpasteurized Liquid Eggs ». *Korean Journal for Food Science of Animal Resources* 38(3): 442-50.

KONG C., NEOH H., NATHAN S. 2016. « Targeting *Staphylococcus aureus* Toxins: A Potential Form of Anti-Virulence Therapy ». *Toxins* 8(3): 72.

KOUTSOUMANIS Konstantinos et al. 2021. « Guidance on Date Marking and Related Food Information: Part 2 (Food Information) ». *EFSA Journal* 19(4): e06510.

KOUTSOUMANIS Kostas et al. 2020. « Pathogenicity Assessment of Shiga Toxin-Producing *Escherichia coli* (STEC) and the Public Health Risk Posed by Contamination of Food with STEC ». *EFSA Journal* 18(1): e05967.

KURPAS M., WIECZOREK K., OSEK J. 2018. « Ready-to-eat Meat Products as a Source of *Listeria monocytogenes* ». *Journal of Veterinary Research* 62(1): 49–55.

LECLAIR R. M., McLEAN S. K., DUNN L. A., MEYER D., PALOMBO E. A. 2019. « Investigating the Effects of Time and Temperature on the Growth of *Escherichia coli* O157:H7 and *Listeria monocytogenes* in Raw Cow's Milk Based on Simulated Consumer Food Handling Practices ». *International Journal of Environmental Research and Public Health* 16: 2691.

LITTLE C. L. et KNOCHEL S. 1994. « Growth and Survival of Yersinia enterocolitica. Salmonella and Bacillus cereus in Brie Stored at 4.8 and 20°C ». International Journal of Food Microbiology 24(1): 137-45.

MAHAKARNCHANAKUL et al. 1999: Influence of temperature shifts on survival. growth. and toxin production by psychotrophic and mesophilic strains of *Bacillus cereus* in potatoes and chicken gravy. International Journal of Food Microbiology 47: 179 - 187.

MAHMOUD Barakat S. M. (edited by) 2012. Salmonella: A Dangerous Foodborne Pathogen. BoD - Books on demand.

MARIK C. M., ZUCHEL J., SCHAFFNER D. W., STRAWN L. K. 2019. « Growth and Survival of *Listeria monocytogenes* on Intact Fruit and Vegetable Surfaces During Postharvest Handling: A Systematic Literature Review ». *Journal of Food Protection* 83(1): 108–28.

MASSA. S., GOFFREDO E., ALTIERI C., NATOLA K. 1999. « Fate of *Escherichia coli* O157: H7 in Unpasteurized Milk Stored at 8 °C ». *Letters in Applied Microbiology* 28(1).

MATCHES. JACK. et J. LISTON. 2006. « Low Temperature Growth of Salmonella ». Journal of Food Science 33: 641-45.

MATTICK K. L. et al. 2001. « Effect of challenge temperature and solute type on heat Tolerance of *Salmonella* Serovars at low water activity ». *Applied and Environmental Microbiology*. 67: 4128-4136.

McWHORTER A. R. et CHOUSALKAR K. K. 2015. « Comparative Phenotypic and Genotypic Virulence of *Salmonella* Strains Isolated from Australian Layer Farms ». *Frontiers in Microbiology* 6. https://www.frontiersin.org/articles/10.3389/fmicb.2015.00012/full (25/05/2021).

MOREY A. et SINGH M. 2012. « Low-Temperature Survival of *Salmonella* Spp. in a Model Food System with Natural Microflora ». *Foodborne Pathogens and Disease* 9(3): 218-23.

MOURA S. C. S. R., VISSOTTO F. Z., BERBARI S. A. G., SOUZA E. C. G., TOTI F. G. P., ALVES JUNIOR P. 2017. « Characterization and evaluation of stability of bioactive compounds in fruit smoothies ». *Food Sci. Technol.* (Campinas) 37 (2).

MRV Microbial Responses Viewer. http://mrviewer.info/# (12/05/2021). NWAIWU O. 2020. « What are the recognized species of the genus *Listeria* ? » *Access Microbiology* 2(9): acmi000153.

NACMCF (National Advisory Committee on Microbiological Criteria for Foods). 2010. Parameters for determining inoculated pack/challenge study protocols. Journal of Food Protection. 73. 140–202. https://doi.org/10.4315/0362-028x-73.1.140.

PINCHUK I. V., BESWICK E. J., REYES V. E., 2010. « Staphylococcal Enterotoxins ». *Toxins* 2(8): 2177-97.

ROSSO L., LOBRY J.R., BAJARD S., FLANDROIS J.P., 1995. « Convenient model to describe the combined effects of temperature and pH on microbial growth ». *Appl. Environ. Microbiol.* 61. 610-616.

ROSSO L., LOBRY J.R., FLANDROIS J.P. 1993. « An unexpected correlation between cardinal temperatures of microbial growth highlighted by a new model ». *J. Theor. Biol.* 162. 447-463.

RYANG J.H., KIM N.H., LEE B.S., KIM C.T., RHEE M.S., 2016. « Destruction of *Bacillus cereus* Spores in a Thick Soy Bean Paste (Doenjang) by Continuous Ohmic Heating with Five Sequential Electrodes ». *Letters in Applied Microbiology* 63(1): 66-73.

SALAZAR J.K., SAHU S.N., HILDEBRANDT I.M., ZHANG L., QI Y., LIGGANS G., DATTA A.R. and TORTORELLO M.L. 2017. « Growth Kinetics of *Listeria monocytogenes* in Cut Produce ». Journal of Food Protection. Vol. 80. No. 8. p. 1328-1336.

SCHMIDT S. J. et FONTANA Jr A. J. 2007. « Appendix E: Water Activity Values of Select Food Ingredients and Products ». *Water Activity in Foods*. 407-420.

SWEARINGEN M. C., PORWOLLIK S., DESAI P.T., McCLELLAND M., AHMER B.M.M. 2012. « Virulence of 32 *Salmonella* Strains in Mice ». *PLoS ONE* 7(4). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3338620/ (25/05/2021).

TALUKDAR P. K., UDOMPIJITKUL P., HOSSAIN A., SARKER M. R. 2016. « Inactivation Strategies for *Clostridium perfringens* Spores and Vegetative Cells ». *Applied and Environmental Microbiology* 83(1). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5165105/ (31/05/2021).

US FDA (US Food and Drug Administration). 2017. Food Code 2017. Recommendations of the United States Public Health Service Food and Drug Administration. U.S. Department of Health and Human Services. Public Health Service. Food and Drug Administration. College Park. MD 20740. Available online: https://www.fda.gov/media/ 110822/download

VALERO A., PEREZ-RODRIGUEZ F., CARRASCO E., FUENTES-ALVENTOSA J.M., GARCIA-GIMENO R.M., ZURERA G. 2009 « Modelling the growth boundaries of *Staphylococcus aureus*: Effect of temperature. pH and water activity » - Volume 133. Issues 1-2. 31 July 2009. Pages 186-194 - ScienceDirect ».

https://www.sciencedirect.com/science/article/abs/pii/S016816050900292X (21/05/2021).

VERNOZY-ROZAND C. et al. 2007. « *E. coli* STEC ». In *Food Safety Handbook*. bioMérieux Education. bioMérieux édition. 74-93.

WANG X., LAHOU E., DE BOECK E., DEVLIEGHERE F., GEERAERD A., UYTTENDAELE M. 2015. « Growth and Inactivation of *Salmonella enterica* and *Listeria monocytogenes* in Broth and Validation in Ground Pork Meat during Simulated Home Storage Abusive Temperature and Home Pan-Frying ». *Frontiers in Microbiology* 6: 1161.

WEAGANT S. D., BRYANT J. L., BARK D. H. 1994: Survival of *Escherichia coli* O157:H7 in mayonnaise and mayonnaise-based sauces at room and refrigerated temperatures. Journal of Food Protection 57(7): 629 – 631.

WELLS J. M. et BUTTERFIELD J. E.1999. « Incidence of *Salmonella* on Fresh Fruits and Vegetables Affected by Fungal Rots or Physical Injury ». *Plant Disease* 83(8): 722-26.

WHO 2011. « Outbreaks of *E. coli* O104:H4 Infection ». https://www.euro.who.int/en/health-topics/disease-prevention/food-safety/outbreaks-of-e.-coli-o104h4-infection (24/05/2021).

WHO 2018. «WHO Fact Sheet on Enterohaemorrhagic *Escherichia coli* (EHEC) ». https://www.who.int/news-room/fact-sheets/detail/e-coli (24/05/2021).

WORLD HEALTH ORGANISATION. et FAO. éd. 2004. *Risk Assessment of Listeria monocytogenes in Ready-to-Eat Foods: Technical Report*. Geneva: WHO [u.a.].

WU X. et SU Y-C. 2014. « Growth of *Staphylococcus aureus* and Enterotoxin Production in Pre-Cooked Tuna Meat ». *Food Control* 42: 63-70.

ZIEGLER M., KENT D., STEPHAN R., GULDIMANN C. 2019. « Growth Potential of *Listeria monocytogenes* in Twelve Different Types of RTE Salads: Impact of Food Matrix. Storage Temperature and Storage Time ». *International Journal of Food Microbiology* 296: 83–92.

ZWIETERING M.H., WIJTZES T., DE WIT J.C., VAN'T RIET K. 1992. A decision support system for prediction of the microbial spoilage in foods. J. Food Prot. 55. 973-979.

Time and Temperature Trial Form

Component/Meal Family	рН	Aw	Temperature						
			4-Hours	6-Hours	10- Hours	14- Hours	18- Hours	24- Hours	
Raw Vegetables Sliced and Seasoned	6,25	0,997							
Raw Vegetables Sliced and Unseasoned	6,50	0,996							
Cooked Cold Vegetables	4,34	0,985							
Meat Delicatessen Cured	6,07	0,950							
Meat Delicatessen Cooked	6,23	0,990							
Cooked Hot Foods	6,37	0,983							
Soups	6,41	0,997							
Salad with Raw and or Cooked Vegetables with Starchy Foods	5,08	0,994							
Salads with Raw Vegetables or Cooked Vegetables with PAO	4,94	0,992							
Cooked Cold Food (Other)	6,22	0,992							
Raw Fish	6,80	0,997							
Processed Fish	6,27	0,980							
Cooked Egg Products	7,60	0,970							
Cold Sandwiches	5,37	0,968							
Cold Sandwiches with Cured Meat	5,82	0,913							
Cold Sandwiches with Cooked Meat and Fish	6,19	0,990							
Cold Sandwiches with Raw Vegetables	5,18	0,973							
Cooked Dishes with PAO with Starchy Foods w/out Vegetables	6,27	0,990							
Cooked Dishes with PAO with Starchy Foods with Vegetables	5,58	0,990							
Cooked Dishes with PAO without Starchy Food w/out Vegetables	6,76	0,994							
Cooked Dishes with PAO without Starchy Food with Vegetables	6,08	0,995							
Cooked Dishes without PAO with Starch without Vegetables	6,40	0,997							
Cooked Dishes without PAO with Starchy Foods with Vegetables	6,30	0,992							
Cooked Dishes without PAO without Starch with Vegetables	6,20	0,996							
Fried Products (to be Reheated)	6,76	0,978							
Cream or Cooked Egg Product based Sauces	5,13	0,991							
Cream or (Raw) Egg Product based Sauces	3,70	0,997							
Pasteurized Cooked and Uncooked Pressed Cheese	6,11	0,987							
Pasteurised Soft Cheese, Bloomy Rind and Washed Rind	6,63	0,978							
Pasteurised Blue-veined Cheese	6,87	0,966							

AIRLINE CATERING ASSOCIATION

6,63	0,978					
5,61	0,935					
4,75	0,992					
4,60	0,991					
6,78	0,994					
5,60	0,987					
3,39	0,987					
4,30	0,750					
7,10	0,770					
5,20	0,970					
6,20	0,860					
4,76	0,970					
5,67	0,977					
6,55	0,987					
6,30	0,387					
6,40	0,904					
	5,61 4,75 4,60 6,78 5,60 3,39 4,30 7,10 5,20 6,20 4,76 5,67 6,55 6,30	5,61 0,935 4,75 0,992 4,60 0,991 6,78 0,994 5,60 0,987 3,39 0,987 4,30 0,750 7,10 0,770 5,20 0,970 6,20 0,860 4,76 0,970 5,67 0,987 6,30 0,387	5,61 0,935 4,75 0,992 4,60 0,991 6,78 0,994 5,60 0,987 3,39 0,987 4,30 0,750 7,10 0,770 5,20 0,970 6,20 0,860 4,76 0,970 5,67 0,977 6,55 0,987	5,61 0,935 4,75 0,992 4,60 0,991 6,78 0,994 5,60 0,987 3,39 0,987 4,30 0,750 7,10 0,770 5,20 0,970 6,20 0,860 4,76 0,977 5,67 0,987 6,30 0,387	5,61 0,935	5,61 0,935

2/2

AIRLINE CATERING ASSOCIATION